Impact of Different Concentrations of Aluminum Chloride on Callus Induction and Organogenesis in Date Palm (Phoenix dactylifera L.) cv. "Barhi"
DOI:
https://doi.org/10.54174/2v76bx21Keywords:
Indirect shoot, in vitro, induction, callus, organogenesis.Abstract
The present study was conducted in the Plant Tissue Culture Laboratory, Date Palm Research Center, University of Basrah, Basrah, Iraq for the years 2023 and 2024. The investigation aims to test the effect of adding different concentrations of aluminum chloride (0, 15, 30, and 45mg L-1) to the MS medium prepared to induce callus and indirect shoot regeneration of date palm (Phoenix dactylifera L. cv. Barhi) grown using an in vitro culture technique. The results showed that the aluminum chloride treatment at a concentration of 45mg L-1 significantly outperformed the 15 mg L-1 treatment of aluminum chloride and the control treatment in response to callus induction (%), fresh and dry weight (mg). The control treatment recorded the lowest values in response to callus induction and fresh and dry callus weight. The results indicate that the aluminum chloride treatment at a concentration of 45mg L-1 significantly outperformed the 15mg L-1 treatment of aluminum chloride and the control treatment in response to shoot regeneration, number of shoots per culture, shoot length, and number of leaves per shoot. The control treatment recorded the lowest values in these characteristics.
Downloads
References
Abhman, A.; Al-Arabi, A. M. & Al-Bougrafawi, M. (2001) Tissue culture technology and its importance in the propagation of date palm Phoenix dactylifera L. Arab Center for the Studies of Arid Zones and Dry Lands, Palm Research and Development Network, Guidance Bulletin No. (3), Damascus 2001.
Al-Khayri, J.M. (2007). Date Palm Phoenix dactylifera L. Micropropagation. In: Jain, S.M., Häggman, H. (eds) Protocols for Micropropagation of Woody Trees and Fruits. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6352-7_46
Al-Mayahi, A.M.W. (2019). Effect of aluminum on the growth of the in vitro culture tissues of the date palm (Phoenix dactylifera L.) cv. Um-Aldehin. FOLIA OECOLOGICA, 46(2): 164-169. https://doi.org/10.2478/foecol-2019-0019
Al-Mssallem, M. Q., Al-Khayri, J. M., Alghamdi, B. A., Alotaibi, N. M., Alotaibi, M. O., Al-Qthanin, R. N., & Al-Shalan, H. Z. (2024). Role of Date Palm to Food and Nutritional Security in Saudi Arabia. In Food and Nutrition Security in the Kingdom of Saudi Arabia, Vol. 2: Macroeconomic Policy and Its Implication on Food and Nutrition Security (pp. 337-358). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-46704-2_15
Bidabadi, S. S., & Jain, S. M. (2020). Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants, 9(6), 702. https://doi.org/10.3390/plants9060702
Echegaray, N., Pateiro, M., Gullón, B., Amarowicz, R., Misihairabgwi, J. M., & Lorenzo, J. M. (2020). Phoenix dactylifera products in human health–A review. Trends in Food Science & Technology, 105, 238-250. https://doi.org/10.1016/J.TIFS.2020.09.017
Ezaki, B., Suzuki, M., Motoda, H., Kawamura, M., Nakashima, S., & Matsumoto, H. (2004). Mechanism of gene expression of Arabidopsis glutathione S-transferase, AtGST1, and AtGST11 in response to aluminum stress. Plant physiology, 134(4), 1672-1682. https://doi.org/10.1104/pp.103.037135
George, E.F., Hall, M.A., Klerk, GJ.D. (2008). The Components of Plant Tissue Culture Media I: Macro- and Micro-Nutrients. In: George, E.F., Hall, M.A., Klerk, GJ.D. (eds) Plant Propagation by Tissue Culture. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5005-3_3
Gribble, K., Conroy, J. P., Holford, P., & Milham, P. J. (2002). In vitro uptake of minerals by Gypsophila paniculata and hybrid eucalypts, and relevance to media mineral formulation. Australian Journal of Botany, 50(6), 713-723. http://dx.doi.org/10.1071/BT02018
Hashem, M. S., Ali, A. H., & Ibrahim, M. A. (2018). Effect of extracellular products extract of cyanobacteria Oscillatoria tenuis on micropropagation of date palm Phoenix dactylifera L. cv." Barhee". Advances in Agriculture & Botanics, 10(2), 57-62.
Hoshmand, R. (2018). Design of experiments for agriculture and the natural sciences. Chapman and Hall/CRC. https://doi.org/10.1201/9781315276021
Ibrahim, A. A. (2019). Palm Cultivation and Date Quality Between Environmental Factors, Service and Care Programs. Khalifa International Award for Date Palm and Agricultural Innovation, United Arab Emirates: 18-19 pp.
Ibrahim, M. A., Waheed, A. M., & Al-Taha, H. A. (2013). Plantlet regeneration from root segments of date palm tree (Phoenix dactylifera L. cv. Barhee) producing by in vitro culture. Advances in Agriculture & Botanics, 5(1), 45-50.
Ibrahim, M. A., Al-Taha, H., & AL-ALI, Z. T. (2017). Effect of casein hydrolysate and paclobutrazol on embryogenesis of date palm (Phoenix dactylifera L.) cv. Nersy by in vitro culture. Journal of Garmian University, 4(ICBS Conference), 395-404. https://doi.org/10.24271/garmian.150
Ibrahim, M. A., Ali, A. H., & Hashem, M. S. (2018). The use of blue-green algae in increasing the efficiency of the tissue culture system in date palm Phoenix dactylifera L. cv." Barhee". Advances in Agriculture & Botanics, 10(2), 97-103.
Ibrahim, M., Ali, A. H., & Hashem, M. S. (2021). In vitro effects of cyanobacteria (Oscillatoria tenuis) extracellular products on date palm (Phoenix dactylifera L. cv.‘Barhee’) propagation. DYSONA-Applied Science, 2(1), 1-7. https://doi.org/10.30493/DAS.2020.246624
Kaur, S., Kaur, N., Siddique, K. H., & Nayyar, H. (2016). Beneficial elements for agricultural crops and their functional relevance in defence against stresses. Archives of Agronomy and Soil Science, 62(7), 905-920. https://doi.org/10.1080/03650340.2015.1101070
Khairallah, H. M. (2007). Micropropagation of two date palm cultivars Phoenix dactylifera L. using inflorescence and genetic stability study using RFLP markers. PhD thesis, College of Agriculture, University of Baghdad, Iraq.
Muhammad, N., Zvobgo, G., & Guo-ping, Z. H. A. N. G. (2018). A review: the beneficial effect of aluminum on plant growth in acid soil and the possible mechanisms. Journal of Integrative Agriculture, 17, 60345-60347. https://doi.org/10.1016/S2095-3119(18)61991-4
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3): 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Noor, M., Niazi, A. K., Joyia, F. A., Arshad, M., & Farooq, M. A. (2023). Regulation of cell signaling in response to abiotic stresses in plants. In The Role of Growth Regulators and Phytohormones in Overcoming Environmental Stress (pp. 1-13). Academic Press. https://doi.org/10.1016/b978-0-323-98332-7.00011-1
Ofoe, R., Thomas, R. H., Asiedu, S. K., Wang-Pruski, G., Fofana, B., & Abbey, L. (2023). Aluminum in plant: Benefits, toxicity and tolerance mechanisms. Frontiers in plant science, 13, 1085998. https://doi.org/10.3389/fpls.2022.1085998
Rabinovich, D. (2013). The allure of aluminium. Nature Chem 5, 76 (2013). https://doi.org/10.1038/nchem.1535
Rahman, M. A., Lee, S. H., Ji, H. C., Kabir, A. H., Jones, C. S., & Lee, K. W. (2018). Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: current status and opportunities. International journal of molecular sciences, 19(10), 3073. https://doi.org/10.3390/ijms19103073
Ramirez-Estrada, K., Vidal-Limon, H., Hidalgo, D., Moyano, E., Golenioswki, M., Cusidó, R. M., & Palazon, J. (2016). Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules, 21(2), 182. https://doi.org/10.3390/molecules21020182
Singhal, R. K., Fahad, S., Kumar, P., Choyal, P., Javed, T., Jinger, D., ... & Nawaz, T. (2023). Beneficial elements: New Players in improving nutrient use efficiency and abiotic stress tolerance. Plant Growth Regulation, 100(2), 237-265. https://doi.org/10.1007/s10725-022-00843-8
Subiramani, S., Sundararajan, S., Govindarajan, S., Sadasivam, V., Ganesan, P. K., Packiaraj, G., ... & Narayanasamy, J. (2019). Optimized in vitro micro-tuber production for colchicine biosynthesis in Gloriosa superba L. and its anti-microbial activity against Candida albicans. Plant Cell, Tissue and Organ Culture (PCTOC), 139, 177-190. https://doi.org/10.1007/s11240-019-01675-7
Zafar, N., Mujib, A., Ali, M., Tonk, D., & Gulzar, B. (2017). Aluminum chloride elicitation (amendment) improves callus biomass growth and reserpine yield in Rauvolfia serpentina leaf callus. Plant Cell, Tissue and Organ Culture (PCTOC), 130, 357-368. https://doi.org/10.1007/s11240-017-1230-7
Zayed, Z. E., El Dawayati, M. M., & El Sharabasy, S. F. (2019). Total steroids production from date palm callus under heavy metals stress. Biosci Res, 16(2), 1448-1457.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.