Synergistic Effect of Capparis Spinosa Fruits Extract in Comparison with Ciprofloxacin Against Resistant E. Coli O157:H7
Abstract
This study was conducted to evaluate the synergistic effect between Capparis Spinosa fruits methanolic extract and ciprofloxacin against resistant E. Coli O157:H7, in varying concentration. This experiment was carried out through the ultrasonic alcoholic extraction of C. Spinosa fruits, and an extraction ratio of 24% was obtained. The extract showed pronounced concentration dependent antibacterial activity. The susceptibility study revealed that E. Coli O157:H7 was sensitive to C. Spinosa fruits. The findings of the present study indicate that the use of pronounced C. Spinosa fruits extract may have the perfect to be choice in clinical control. The concentration of C. spinosa fruits extract increase the activity of inhibition, increase as well when used in combination with ciprofloxacin (half concentration from each other). In result appeared synergism effect between plant extract and ciprofloxacin and may make bacteria lost their resistance to antibiotics by this synergism phenomenon. The result of MIC (6400 µg/ ml), MBC (12800 µg/ ml) and for C. spinose fruits extract while ciprofloxacin MIC (12.5 µg/ ml) and MBC (25 µg/ ml). MICs of CIP/ C. spinosa fruits extract combinations against E. coli O157:H7 isolate was 1.562/ 1600 μg/ml. Value of minimum bactericidal concentration (MBC) of the synergistic combinations (CIP/ C. spinosa fruits extract) was 3.124/ 3200 μg/ml. According to obtained results fractional inhibitory concentration (FIC) value of (CIP/ C. spinosa fruits extract 1.562/ 1600 μg/ml) was (0.375) less than 0.5 indicates synergistic effect of interaction.
References
Saeedi, P., Yazdanparast, M., Behzadi, E., Salmanian, A. H., Mousavi, S. L., Nazarian, S., & Amani, J. (2017). A review on strategies for decreasing E. coli O157: H7 risk in animals. Microbial pathogenesis, 103: 186-195.
Al-Taii, D. H. F., & Yousif, A. A. (2019). Effects of E. coli O157: H7 experimental infections on rabbits. The Iraqi Journal of Veterinary Medicine, 43(1), 34-42.
Yaseen, S. M., Saleh, A. M., & Al-Zubaidy, R. S. (2017). Contamination of the local produced broilers carcasses with Escherichia coli O157: H7 and its effect in public health in Diyala province. The Iraqi Journal of Veterinary Medicine, 41(2), 113-117.
Pal, M., Mulu, S., Tekle, M., Pintoo, S. V., & Prajapati, J. (2016). Bacterial contamination of dairy products. Beverage and food world, 43(9): 40-43.
Muraih, J. K., Arean, A. G., & Abdulabass, H. T. (2020). Phytochemical and antibacterial activity of Capparis spinosa roots extracts against some pathogenic bacteria. Ann Trop Med Public Health, 23(S10): SP231010.
Ennacerie, F. Z., Filali, F. R., & Najia Moukrad, E. D. A. (2017). Antibacterial synergistic effect of extracts of the organs of capparis spinosa and in combination with antibiotics. International Journal of Advanced Research, 5(9): 1238-47.
Philcox, D. (2017). Capparaceae. In A revised handbook to the Flora of Ceylon. Routledge. 23-50.
Mohammed, G. J., Al-Jassani, M. J., & Hameed, I. H. (2016). Antibacterial, Antifungal Activity and Chemical analysis of Punica grantanum (Pomegranate peel) using GCMS and FTIR spectroscopy. International Journal of Pharmacognosy and Phytochemical Research, 8(3): 480-494.
Chedraoui, S., Abi-Rizk, A., El-Beyrouthy, M., Chalak, L., Ouaini, N., & Rajjou, L. (2017). Capparis spinosa L. in a systematic review: A xerophilous species of multi values and promising potentialities for agrosystems under the threat of global warming. Frontiers in Plant Science, 8: 1-8.
Nabavi, S. M., Russo, G. L., Tedesco, I., Daglia, M., Orhan, I. E., Nabavi, S. F., ... & Hajheydari, Z. (2018). Curcumin and melanoma: from chemistry to medicine. Nutrition and cancer, 70(2): 164-175.
Grimalt, M., Hernández, F., Legua, P., Almansa, M. S., & Amorós, A. (2018). Physicochemical composition and antioxidant activity of three Spanish caper (Capparis spinosa L.) fruit cultivars in three stages of development. Scientia horticulturae, 240: 509-515.
Mollica, A., Zengin, G., Locatelli, M., Stefanucci, A., Mocan, A., Macedonio, G., ... & Novellino, E. (2017). Anti-diabetic and anti-hyperlipidemic properties of Capparis spinosa L.: in vivo and in vitro evaluation of its nutraceutical potential. Journal of functional foods, 35: 32-42.
Shahrajabian, M. H., Sun, W., & Cheng, Q. (2021). Plant of the Millennium, Caper (Capparis spinosa L.), chemical composition and medicinal uses. Bulletin of the National Research Centre, 45(1): 1-9.
El-Ansari, M. A., Ibrahim, L. F., & Sharaf, M. (2018). Capparis spinosa L.: a natural source of pharmaceuticals. Egyptian Pharmaceutical Journal, 17(2): 61.
Anwar, F., Muhammad, G., Hussain, M. A., Zengin, G., Alkharfy, K. M., Ashraf, M., & Gilani, A. H. (2016). Capparis spinosa L.: A plant with high potential for development of functional foods and nutraceuticals/ pharmaceuticals. International Journal of Pharmacology, 12(3): 201-219.
Stefanucci, A., Zengin, G., Locatelli, M., Macedonio, G., Wang, C. K., Novellino, E., ... & Mollica, A. (2018). Impact of different geographical locations on varying profile of bioactives and associated functionalities of caper (Capparis spinosa L.). Food and chemical toxicology, 118: 181-189.
Rahnavard, R., & Razavi, N. (2017). A review on the medical effects of Capparis spinosa L. Advanced Herbal Medicine, 3(1): 44-53.
Mehrzadi, S., Mirzaei, R., Heydari, M., Sasani, M., Yaqoobvand, B., & Huseini, H. F. (2021). Efficacy and safety of a traditional herbal combination in patients with type II diabetes mellitus: a randomized controlled trial. Journal of Dietary Supplements, 18(1): 31-43.
Pandey, A. T., Pandey, I., Hachenberger, Y., Krause, B. C., Haidar, R., Laux, P., ... & Singh, A. V. (2020). Emerging paradigm against global antimicrobial resistance via bioprospecting of mushroom into novel nanotherapeutics development. Trends in Food Science & Technology, 106: 333-344.
Hematian, A., Nouri, M., & Dolatabad, S. S. (2020). Kashk with caper (Capparis spinosa L.) extract: quality during storage. Foods & Raw Materials, 8(2).
Mostafaloo, R., Asadi-Ghalhari, M., Izanloo, H., & Zayadi, A. (2020). Photocatalytic degradation of ciprofloxacin antibiotic from aqueous solution by BiFeO3 nanocomposites using response surface methodology. Global Journal of Environmental Science and Management, 6(2): 191-202.Zhang, G. F., Liu, X.,
Zhang, S., Pan, B., & Liu, M. L. (2018). Ciprofloxacin derivatives and their antibacterial activities. European journal of medicinal chemistry, 146: 599-612.
Davis, R.; Markham, A.; and Balfour, J. A. (1996). Ciprofloxacin drug, 51(6): 1019-1074.
Kawas, G., Marouf, M., Mansour, O., & Sakur, A. A. (2018). Analytical methods of ciprofloxacin and its combinations review. Research Journal of Pharmacy and Technology, 11(5): 2139-2148.
Pietsch, F., Bergman, J. M., Brandis, G., Marcusson, L. L., Zorzet, A., Huseby, D. L., & Hughes, D. (2016). Ciprofloxacin selects for RNA polymerase mutations with pleiotropic antibiotic resistance effects. Journal of Antimicrobial Chemotherapy, 72(1): 75-84.
Hooper, D. C., Wolfson, J. S., Ng, E. Y., & Swartz, M. N. (1987). Mechanisms of action of and resistance to ciprofloxacin. The American journal of medicine, 82(4A): 12-20.
Shybut, T. B., & Puckett, E. R. (2017). Triceps ruptures after fluoroquinolone antibiotics: a report of 2 cases. Sports Health, 9(5): 474-476.
Smith, N., Fackrell, R., & Henderson, E. (2016). Ciprofloxacin-associated bilateral iliopsoas tendon rupture: a case report. Age and Ageing, 45(5): 737-738.
Cozzani, E., Chinazzo, C., Burlando, M., Romagnoli, M., & Parodi, A. (2016). Ciprofloxacin as a trigger for bullous pemphigoid: the second case in the literature. American Journal of Therapeutics, 23(5): e1202-e1204.
Scavone, C., Mascolo, A., Ruggiero, R., Sportiello, L., Rafaniello, C., Berrino, L., & Capuano, A. (2020). Quinolones-Induced Musculoskeletal, Neurological, and Psychiatric ADRs: A Pharmacovigilance Study Based on Data from the Italian Spontaneous Reporting System. Frontiers in pharmacology, 11: 428.
Hajji, M., Jebali, H., Mrad, A., Blel, Y., Brahmi, N., Kheder, R., ... & Zouaghi, M. K. (2018). Nephrotoxicity of ciprofloxacin: five cases and a review of the literature. Drug Safety-Case Reports, 5(1): 1-5.
Arean, A. G., Ali, T. H., & Muraih, J. K. (2019). Extracted chemical compounds from Capparis spinosa leaves and their antibacterial activity on pathogenic bacteria. Journal of Pharmaceutical Sciences and Research, 11(2): 603-608.
Ghorbani, M., Aboonajmi, M., Ghorbani, J. M., & Arabhosseini, A. (2017). Effect of ultrasound extraction conditions on yield and antioxidant properties of the fennel seed (Foeniculum vulgare) extract. J Food Sci Technol. 14(6): 63–73.
Quinn, P.J.; Carter, M.E.; Markey, B. and. Carter, G.R. (2004). Clinical Veterinary Microbiology. Mosby.Edinburgh, Lomdon, New York, Oxord and Philadephia. USA. pp:21-63.
Perez, C., Pauli, M. and Bezevque, P. (1990). An antibiotic assay by agar well diffusion method. Acta Biologiae Medicine Experimentalis, 15: 113-115.
CLSI (Clinical and Laboratory Standards Institute). (2018). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals; Approved Standard 5th ed. CSLI Supplement VET08.Wayne, PA: Clinical and Laboratory Standards Institute USA, 33-53.
Veiga, A., Maria da Graça, T. T., Rossa, L. S., Mengarda, M., Stofella, N. C., Oliveira, L. J., and Murakami, F. S. (2019). Colorimetric microdilution assay: Validation of a standard method for determination of MIC, IC50%, and IC90% of antimicrobial compounds. Journal of microbiological methods, 162: 50-61.
Desouky, E. M., Shalaby, M. A., Gohar, M. K., & Gerges, M. A. (2020). Evaluation of antibacterial activity of silver nanoparticles against multidrug-resistant Gram negative bacilli clinical isolates from Zagazig University Hospitals. Microbes and Infectious Diseases, 1(1): 15-23.
Assadi, S., Shafiee, S. M., Erfani, M., & Akmali, M. (2021). Antioxidative and antidiabetic effects of Capparis spinosa fruit extract on high-fat diet and low-dose streptozotocin-induced type 2 diabetic rats. Biomedicine & Pharmacotherapy, 138: 111391.
Johnson, T. R., Case, C. L., Cappuccino, J. G., & Sherman, N. (2013). Great Adventures In The Microbiology Laboratory. Microbiology, 22: 175-176.
Anjum, A. (2015). Isolation of Shiga toxin producing Escherichia coli 0157: H7 from street food and raw vegetables in Dhaka City.
Disassa, N., Sibhat, B., Mengistu, S., Muktar, Y., & Belina, D. (2017). Prevalence and antimicrobial susceptibility pattern of E. coli O157: H7 isolated from traditionally marketed raw cow milk in and around Asosa town, western Ethiopia. Veterinary medicine international, Volume 2017, Article ID 7581531, 7 pages.
Rodriguez‐Souto, R. R., Garrido‐Maestu, A., Pastoriza‐Fontan, A., & Lozano‐Leon, A. (2017). Investigation and characterization of Shiga toxin‐producing Escherichia coli present in mussels from harvesting areas in Galician southern Rias (NW Spain). Journal of Food Safety, 37(4): e12367.
Novicki, T. J., Daly, J. A., Mottice, S. L., & Carroll, K. C. (2000). Comparison of sorbitol MacConkey agar and a two-step method which utilizes enzyme-linked immunosorbent assay toxin testing and a chromogenic agar to detect and isolate enterohemorrhagic Escherichia coli. Journal of Clinical Microbiology, 38(2): 547-551.
Yousif, A., & Al-Taii, D. (2014). Isolation and characterization of E. coli O157: H7 from human and animals. Mirror Res. Vet. Sci. Anim, 3(2): 11-18.
Al–Dawmy, F. A. A., & Yousif, A. A. (2013). Prevalence of E. coli O157: H7 in intestinal and urinary tract infection in children. Int. J. Adv. Res, 1(8): 111-120.
Zelyas, N., Poon, A., Patterson-Fortin, L., Johnson, R. P., Lee, W., & Chui, L. (2016). Assessment of commercial chromogenic solid media for the detection of non-O157 Shiga toxin-producing Escherichia coli (STEC). Diagnostic Microbiology and Infectious Disease, 85(3): 302-308.
Al-Saadi, Z. H., Tarish, A. H., & Saeed, E. A. (2018). Phenotypic detection and antibiotics resistance pattern of local serotype of E. coli O157: H7 from children with acute diarrhea in Hilla city/Iraq. Journal of Pharmaceutical Sciences and Research, 10(3): 604-609.
Paim, T. G. D. S., Cantarelli, V. V., & d'Azevedo, P. A. (2014). Performance of the Vitek 2 system software version 5.03 in the bacterial identification and antimicrobial susceptibility test: evaluation study of clinical and reference strains of Gram-positive cocci. Revista da Sociedade Brasileira de Medicina Tropical, 47 (3): 377-381.
Al-Humam, N. A. (2016). Special biochemical profiles of Escherichia coli strains isolated from humans and camels by the VITEK 2 automated system in Al-Ahsa, Saudi Arabia. Afric. J. Microb. Res. 10(22): 783-790.
AL-Azawi, A. H., Ghaima, K. K., & Salih, H. H. (2018). Phytochemical, antibacterial and antioxidant activities of Capparis spinosa L. Cultivated in iraq. Bioscience Research, 15(3): 2611-2618.
Hamad, L. R., Hussain, A. B., & Hassan, M. H. (2020). A Pharmacological Effects of Copparis spinosa Extracts on Pathogenic Escherichia Coli. International Journal of Pharmaceutical Research, 12(2): 0975-2366.
Oudah, S. K., Al-Salih, R. M., Gusar, S. H., & Roomi, A. B. (2019). Study of the role of polyphenolic extract of capparis spinosa L. leaves as acute toxicity and antibacterial agent. Plant Archives, 19(2): 3821-3829.
Hameed, A. T., Zaidan, D. H., & Dawd, S. M. (2021). The Phytochemical Constituent of Capparis Spinosa L. And Phenolic Activity on Pathogenic Bacteria and Blood Parameters. systematic reviews in pharmacy, 12 (1): 1193-1198.
Al-Akedi, M. A. I., Al-Akedi, A. J., & Idris, K. (2012). Inhibitory activity of Capparis spinosa extracts against pathogenic microorganisms. Journal Of Education And Science, 25(63): 53-67.
Parekh, J. and Chanda, S. (2007). In vitro screening of antibacterial activity of aqueous and alcoholic extract of various Indian plant species against selected pathogens from Enterbacteriaceae. African Journal of microbiology research, 1(6): 92-99.
Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R. and Banat, I.M., (2016). Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnology letters, 38(6): 1015-1019.