Effect of foliar application of Humic acid and Nano Iron on Physical Characteristics of Eggplant (Solanum melongena L.)
DOI:
https://doi.org/10.54174/s1qv4497Keywords:
Agriculture, Marshlands, Thi Qar, Fruit, leavesAbstract
This experiment was conducted at the open-air researches station of the College of Agriculture and Marshlands, University of Thi Qar, Thi Qar Governorate, Iraq, during 2024-2025. The purpose of the study was to investigate the effect of foliar spraying with humic acid at three concentrations (0, 2, and 4) g/L and foliar spraying with nano-iron at five concentrations (0, 20, 40, 60, and 100) mg/L on the physical characteristics of eggplant (Solanum melongena L. Var. Barcelona). Results showed that (4) g/L Humic acid concentration was superior in terms: Plant height (73.89) cm/plant, leaves number(57.78) leaf), stem diameter(2.67) cm/plant, branches number(3.99) branch/plant, fruits number(19.69) fruit/plant and fruit weight (118.14) g/fruit. Also, Results showed that (60) mg/L nano-iron concentration was superior in terms (Plant height(73.40)cm/plant, leaves number(53.92) leaf/plant, stem diameter(2.72)cm/plant, branches number(3.74) branches/plant, fruits number(19.31) fruit/plant and fruit weight (117.69) g/fruit.
Downloads
References
Al-Ghasheem, K. and Abood, M. S. (2023). Mycosynthesis of AgNPs from Candida albicans and its antagonistic activity against pathological factors of the urinary and reproductive system in women. Journal of Survey in Fisheries Sciences, 10(3S), Special Issue 3.
Al-Rawi, K. M. and Khalaf Allah, A. A. M. (2000). Design and analysis of agricultural experiments. Books House for Printing and Publishing, University of Mosul.
Al-Juthery, H. W. A., Ali, N. S., Al-Taee, D. and Ali, E. A. H. M. (2018). The impact of foliar application of nanaofertilizer, seaweed and hypertonic on yield of potato. Plant Archives, 18(2), 2207–2212.
Amador, H. V., Izquierdo, F. G. and Padrón, V. V. (2018). Humic substances as plant biostimulants under environmental stress conditions. Cultivos Tropicales, 39(4), 102–110.
Amiri Forotaghe, Z., Souri, M. K., Ghanbari Jahromi, M. and Mohammadi Torkashvand, A. (2022). Influence of humic acid application on onion growth characteristics under water deficit conditions. Journal of Plant Nutrition, 45(7), 1030–1040.
Blando, F., Calabriso, N., Berland, H., Maiorano, G., Gerardi, C., Carluccio, M. A. and Andersen, Ø. M. (2018). Radical scavenging and anti-inflammatory activities of representative anthocyanin groupings from pigment-rich fruits and vegetables. International Journal of Molecular Sciences, 19(1), 169.
Braga, P. C., Scalzo, R. L., Sasso, M. D., Lattuada, N., Greco, V. and Fibiani, M. (2016). Characterization and antioxidant activity of semi-purified extracts and pure delphinidin-glycosides from eggplant peel (Solanum melongena L.). Journal of Functional Foods, 20, 411–421.
Canellas, L. P., da Irineu, L. E. S., Olivares, F. L. and Piccolo, A. (2020). Plant chemical priming by humic acids. Chemical and Biological Technologies in Agriculture, 7, 12. https://doi.org/10.1186/s40538-020-00178-4
De Santiago, A., García López, A. M., Recena, R., Moreno, M. T., Carmona, E. and Delgado, A. (2020). Adsorption of humic substances on ferrihydrite affects its use as iron source by plants. Agriculture and Food Science, 29(5), 451–459.
El-Gioushy, S. F., Ding, Z., Bahloul, A. M. E., Gawish, M. S., Abou El Ghit, H. M., Abdelaziz, A. M. R. A., El-Desouky, H. S., Sami, R., Khojah, E., Hashim, T. A., Kheir, A. M. S. and Zewail, R. M. Y. (2021). Foliar application of nano, chelated, and conventional iron forms enhanced growth, nutritional status, fruiting aspects, and fruit quality of Washington Navel orange trees (Citrus sinensis L. Osbeck). Plants, 10(12), 2577.
Gürbüz, N., Uluişik, S., Frary, A., Frary, A. and Doğanlar, S. (2018). Health benefits and bioactive compounds of eggplant. Food Chemistry, 268, 602–610.
Hasan, B. K. (2019). Effect of humic acid and iron on some growth vegetative characteristics of dill (Anethum graveolens L.). University of Thi-Qar Journal of Agricultural Research, 8(1), 1–10.
Hasan, B. K., Leiby, H. R. and Al-Ghasheem, N. (2022). Effects of nano-chelated micronutrients and seaweed on nutrients uptake and chemical traits of quinoa (Chenopodium quinoa Willd.). Caspian Journal of Environmental Sciences, 20, 985–989.
Hayyawi, W. A., Juthery, K. H., Habeeb, A. K., Fadil Jawad, K. A., Duraid, K. A., Taey, A. L., Abdel Rahman, M. and Tawaha, A. L. (2020). Effect of foliar application of different sources of nano-fertilizers on growth and yield of wheat. Bioscience Research, 15(4), 3988–3997.
MohammedAmin, M. I. and Kanimarani, S. M. (2020). Impact of foliar application of humic acid and the measure time on growth and production of roselle (Hibiscus sabdariffa L.). Tikrit Journal for Agricultural Science, 20(1), 38–48.
Munda, H., McKenna, A. M., Fountain, R. and Lamar, R. T. (2021). Bioactivity of humic acids extracted from shale ore: Molecular characterization and structure-activity relationship with tomato plant yield under nutritional stress. Frontiers in Plant Science, 12, 660224.
Mwinuka, P. R., Mbilinyi, B. P., Mbungu, W. B., Mourice, S. K., Mahoo, H. F. and Schmitter, P. (2021). Optimizing water and nitrogen application for neglected horticultural species in tropical sub-humid climate areas: A case of African eggplant (Solanum aethiopicum L.). Scientia Horticulturae, 276, 109756.
Najarian, A., Souri, M. K. and Nabigol, A. (2022). Influence of humic substance on vegetative growth, flowering and leaf mineral elements of Pelargonium x hortorum. Journal of Plant Nutrition, 45(1), 107–112.
Nardi, S., Schiavon, M. and Francioso, O. (2021). Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules, 26(8), 2256. https://doi.org/10.3390/molecules26082256
Raiesi-Ardali, T., Mamani, L., Chorom, M. and Moezzi, A. (2022). Improved iron use efficiency in tomato using organically coated iron oxide nanoparticles as efficient bioavailable Fe sources. Chemical and Biological Technologies in Agriculture, 9(1), 59.
Rotino, G. L., Sala, T. and Toppino, L. (2014). Eggplant. In Alien Gene Transfer in Crop Plants (Vol. 2, pp. 381–409). Springer, Berlin and Heidelberg.
Sharma, M. and Kaushik, P. (2021). Biochemical composition of eggplant fruits: A review. Applied Sciences, 11, 7078. https://doi.org/10.3390/app11157078
Silva, G. F. P., Pereira, E., Melgar, B., Stojković, D., Sokovic, M., Calhelha, R. C., Pereira, C., Abreu, R. M. V., Ferreira, I. C. F. R. and Barros, L. (2021). Eggplant fruit (Solanum melongena L.) and bio-residues as a source of nutrients, bioactive compounds, and food colorants using innovative food technologies. Applied Sciences, 11, 151.
Zandonadi, D. B., Santos, M. P., Medici, L. O. and Silva, J. (2014). Ação da matéria orgânica e suas frações sobre a fisiologia de hortaliças. Horticultura Brasileira, 32(1), 14–20.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Anwar RADHI, Nazar AL GHASHEEM

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




1.png)
