Interactive Effects of Foliar-Applied Nano NPK and Humic Acid on Growth and Yield of Broccoli (Brassica oleracea var. italica)
DOI:
https://doi.org/10.54174/4zfqdy63Keywords:
Foliar-Applied, Nano NPK, Humic Acid, Growth, Yield, BroccoliAbstract
In field conditions, the effect of nano NPK fertilizers and humic acid treatments as foliar spray on growth, yield, and nutrient content of broccoli (Brassica oleracea var. italica) in a greenhouse was applied. A field experiment was conducted (2022-2023 seasons) under greenhouse conditions at Bakrajo Technical Institute of Sulaimani by using RCBD with synthetic nano as fertilizer at (0, 2.0 ml, 4.0 ml, and 6.0 ml L-1 and humic acid at 0, 2.5, 4.5, and 6.5 ml L-1 and drawing on two weeks, then repeating them after a space of two weeks for six weeks. Plants were analyzed for a range of traits such as plant size, root and stem growth, chlorophyll levels, yield, and mineral content. The results showed that while both treatments improved broccoli performance, humic acid consistently had the strongest impact. Plants treated with humic acid—especially at 2.5 to 6.5 mL/L—produced larger leaves, thicker stems, greater root weight, and higher head yield. The highest yield ever witnessed has been 7.54 tons per hectare under 2.5 mL/L humic acid treatment. There are also significantly higher levels of chlorophyll content and uptake of essential nutrients such as nitrogen, phosphorus, potassium, and iron in these treatments. Nanoparticulate NPK induced improvements, mostly with chlorophyll content and nutrient content, but its effects were mostly overshadowed by humic acid. All in all, this implies the application of humic acid with or without nano NPK in the production of broccoli goes well environmentally and supports the growth and quality of broccoli. This thesis strengthens the claim that combining organic biostimulants with modern nutrient delivery methods could help farmers gain better yields while cutting down on the use of standard chemical fertilizers. A path of sustainable development in present-day horticulture.
Downloads
References
Abdulla, A. R., J. O Ahmed and S. Q. Mahmood, (2015). Comparisons of six hybrids corn (Zea mays L.), in terms of yields and components in Sulaimania. American Eurasian J. Agric. & Environ. Sci, 15(.5), pp.848-852.
Al-douri, M. F., & Al-Douri, E. F. (2024). Response of 'Rubygem'strawberry cultivar plants to balanced NPK fertilizer and humic acid application under greenhouse conditions. Tikrit Journal for Agricultural Sciences, 24(4), 11-20. https://doi.org/10.25130/tjas.24.4.2
AL Salihi, M., & Mahmood, C. (2020). Efect of Two Broccli (Brassica oleracea var.italica) Varieties to Different Transplanting Time and Spraying levels of Sea Weed Extracts on som growth chozaeteztion and yield. Kirkuk University Journal For Agricultural Sciences, 11(2), 68-79. https://doi.org/ 10.58928/ku20.11209
Ahmed, G. O., Halshoy, H. S., Mahmood, C. H., & Hama, J. R. (2024). Titanium nanoparticle and humic acid applications improve seed germination, growth development, and phytochemical contents of lettuce (Lactuca sativa) plants. BioNanoScience, 14(5), 4930-4941. https://doi.org/10.1007/s12668-024-01545-3
Abdel-Razzak, H. S., & El-Sharkawy, G. A. (2013). Effect of biofertilizer and humic acid applications on growth, yield, quality and storability of two garlic (Allium sativum L.) cultivars. Asian Journal of Crop Science, 5 (1), 48-64. https://doi.org/10.3923/ajcs.2013.48.64
Al-Falahi, M. N., Al-Dulaimi, K. H., Ghani, E. T. A., Al-Taey, D. K., & Farhan, K. J. (2022). Effect of humic acids and the amount of mineral fertilizer on some characteristics of saline soil, growth and yield of broccoli plant under salt stress conditions. Agraarteadus. https://doi.org/ 10.15159/jas.22.24
Bezuglova, O., & Klimenko, A. (2022). Application of Humic Substances in Agricultural Industry. Agronomy, 12(3), 584. https://doi.org/10.3390/agronomy12030584
Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1-2), 3–41. https://doi.org/10.1007/s11104-014-2131-8
Canellas, L. P., da Silva, R. M., Busato, J. G., & Olivares, F. L. (2024). Humic substances and plant abiotic stress adaptation. Chemical and Biological Technologies in Agriculture, 11(1), 66. https://doi.org/ 10.1186/s40538-024-00575-z
Canellas, L. P., Canellas, N. O. A., da Silva, R. M., Spaccini, R., Mota, G. P., & Olivares, F. L. (2023). Biostimulants Using Humic Substances and Plant-Growth-Promoting Bacteria: Effects on Cassava (Manihot esculentus) and Okra (Abelmoschus esculentus) Yield. Agronomy, 13(1), 80. https://doi.org/10.3390/agronomy13010080
Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15-27. https://doi.org/10.1016/j.scienta.2015.09.013
Chen, Q., Qu, Z., Ma, G., Wang, W., Dai, J., Zhang, M., ... & Liu, Z. (2022). Humic acid modulates growth, photosynthesis, hormones, and the osmolyte system of maize under drought conditions. Agricultural Water Management, 263, 107447. https://doi.org/10.1016/j.agwat.2021.107447
DeRosa, M. C., Monreal, C., Schnitzer, M., Walsh, R., & Sultan, Y. (2010). Nanotechnology in fertilizers. Nature Nanotechnology, 5(2), 91. https://doi.org/10.1038/nnano.2010.2
Filho, J. F. D. C. L., Thomason, W. E., Evanylo, G. K., Zhang, X., Strickland, M. S., Chim, B. K., & Diatta, A. A. (2020). The synergistic effects of humic substances and biofertilizers on plant development and microbial activity: a review. Int. J. Plant Soil Sci., 32, 56-75. https://doi.org/10.9734/IJPSS/2020/v32i730306
Halshoy, H., Mahmood, A., & Tofiq, G. (2023). Effect of plant biostimulants on growth, yield and some mineral composition of broccoli plants (Brassica oleracea var. Italica). Tikrit Journal for Agricultural Sciences, 23(1), 130-140. https://doi.org/10.25130/tjas.23.1.16
Hawall, I., Raheem, S., Tofiq, G. (2018). Growth and Yield of Broccoli (Brassica oleracea L. Var. Corato) as affected by humic acid application. Journal of Plant Production, 9(9), 739-741. https://doi.org/ 10.21608/jpp.2018.36398
Ismael, S. F., & Sarhan, T. Z. (2025). Effect Of Humic Acid, Seaweed Extracts And Organic Fertilizer On Yield Quality Of Broccoli (Brassica Oleracea) Grown Under Plastic House. Science Journal of University of Zakho, 13(2), 172-178.
https://doi.org/10.25271/sjuoz.2025.13.2.1339
Jindo, K., Olivares, F. L., Malcher, D. J. D. P., Sánchez-Monedero, M. A., Kempenaar, C., & Canellas, L. P. (2020). From lab to field: Role of humic substances under open-field and greenhouse conditions as biostimulant and biocontrol agent. Frontiers in plant science, 11, 426. https://doi.org/10.3389/fpls.2020.00426
Kah, M., Kookana, R. S., Gogos, A., & Bucheli, T. D. (2018). A critical evaluation of nanopesticides and nanofertilizers: Risks and regulatory challenges. Nature Nanotechnology, 13(8), 677–684. https://doi.org/10.1038/s41565-018-0131-1
Liu, X., Sun, Y., & Rui, Y. (2025). Nanomaterials in Broccoli Production: Current Applications and Future Prospects. Agronomy, 15(5), 1193. https://doi.org/10.3390/agronomy15051193
Lumactud, R. A., Gorim, L. Y., & Thilakarathna, M. S. (2022). Impacts of humic-based products on the microbial community structure and functions toward sustainable agriculture. Frontiers in Sustainable Food Systems, 6, 977121. https://doi.org/10.3389/fsufs.2022.977121
Maffia, A., Oliva, M., Marra, F., Mallamaci, C., Nardi, S., & Muscolo, A. (2025). Humic Substances: Bridging Ecology and Agriculture for a Greener Future. Agronomy, 15(2), 410. https://doi.org/10.3390/agronomy15020410
Mahmood, E. K., & Addaheri, M. S. (2024). Impact of Humic Substances on Alleviation of Soil Salinity and the Enhancement of Plant Productivity: a review. Thi-Qar University Journal for Agricultural Researches, 13(1). https://doi.org/10.54174/szm42027
Moradinezhad, F., & Ranjbar, A. (2024). Foliar application of fertilizers and plant growth regulators on pomegranate fruit yield and quality: A review. Journal of Plant Nutrition, 47(5), 797-821. https://doi.org/10.1080/01904167.2023.2280152
Nardi, S., Pizzeghello, D., Muscolo, A., & Vianello, A. (2002). Physiological effects of Humic substances on higher plants. Soil Biology and Biochemistry, 34(11), 1527-1536. https://doi.org/10.1016/S0038-0717(02)00174-8
Nardi, S., Schiavon, M., and Francioso, O. (2021). Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 26, 2256. https://doi.org/10.3390/molecules26082256
Rouphael, Y., & Colla, G. (2020). Biostimulants in agriculture. Scientia Horticulturae, 243, 109367. https://doi.org/10.1016/j.scienta.2019.109367
Safaei, Z., Azizi, M., Davarynejad, G., & Aroiee, H. (2014). The effect of foliar application of humic acid and nanofertilizer (Pharmks®) on yield and yield components of black cumin (Nigella sativa L.). Journal of Medicinal Plants and By-products, 3(2), 133-140. https://doi.org/10.22092/jmpb.2014.108725
Selim, E. M., & Mosa, A. A. (2012). Fertigation of Humic substances improves yield and quality of broccoli and nutrient retention in a sandy soil. Journal of Plant Nutrition and Soil Science, 175(2), 273-281. https://doi.org/10.1002/jpln.201100062
Solanki, P., Bhargava, A., Chhipa, H., Jain, N., & Panwar, J. (2015). Nano-fertilizers and their smart delivery system. Nanotechnologies in food and agriculture, 81-101. https://doi.org/10.1007/978-3-319-14024-7_4
Stell, R., Torrie J., & Dickey D. (1980). Principles and procedures of statistics: A biometrical approach. New York: MacGraw-Hill. https://trove.nla.gov.au/work/9171434/version/49088515
Subramanian, K. S., Manikandan, A., Thirunavukkarasu, M., & Rahale, C. S. (2015). Nano-fertilizers for balanced crop nutrition. In Nanotechnologies in Food and Agriculture (pp. 69-80). Springer. https://doi.org/10.1007/978-3-319-14024-7_3
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671-677.
Trevisan, S., Francioso, O., Quaggiotti, S., & Nardi, S. (2011). Humic substances biological activity at the plant-soil interface: From environmental aspects to molecular factors. Plant Signaling & Behavior, 6(5), 635–643. https://doi.org/10.4161/psb.6.5.15029
Wang, Y., Lu, Y., Wang, L., Song, G., Ni, L., Xu, M., & Bai, Y. (2023). Analysis of the molecular composition of humic substances and their effects on physiological metabolism in maize based on untargeted metabolomics. Frontiers in Plant Science, 14, 1122621. https://doi.org/10.3389/fpls.2023.1122621
Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7, 2049. https://doi.org/10.3389/fpls.2016.02049.
Zanin, L., Tomasi, N., Cesco, S., Varanini, Z., & Pinton, R. (2019). Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Frontiers in Plant Science, 10, 675. doi: 10.3389/fpls.2019.00675
Zulfiqar, F., Casadesús, A., Brockman, H., & Munné-Bosch, S. (2020). An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Science, 295, 110194. https://doi.org/10.1016/j.plantsci.2019.110194.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nigar Abdulrahman

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




1.png)
