Effect of Melatonin on Some Indicators of Vegetative and Biochemical Growth in Washingtonia filifera Trees Under Salinity Stress
DOI:
https://doi.org/10.54174/mawk0v40Keywords:
Washingtonia filifera, salinity, melatonin, BiochemicalAbstract
The experiment was conducted at the Agricultural Research Station of the College of Agriculture, University of Basrah, during the 2023-2024 growing season. The objective was to study the effect of different levels of irrigation water salinity (2, 6, and 12 dS.m-1) and melatonin treatment (0, 50, and 100 mg.L-1) on the vegetative and biochemical growth indicators of Washingtonia filifera seedlings. The experiment was carried out as a factorial experiment with three replicates, following the Randomized Complete Block Design (RCBD). The results were analyzed using the GenStat program, and means were compared using the Least Significant Difference (LSD) test at a 0.05 probability level. The results showed a significant decrease in growth with increasing salinity levels, with the 2 dS.m-1 treatment outperforming in most traits, including plant height, leaf number, leaf area, and chlorophyll and carbohydrate content, and a significant decrease in proline content. Additionally, the results indicated that plants sprayed with 100 mg.L-1 of melatonin outperformed those with other treatments in most of the studied traits. Regarding the interaction effect between the study factors, there was a significant impact on most of the studied traits.
Downloads
References
Al-Batal, N. (2005). Outdoor ornamental plants. Damascus University Publications.
Al-Hamishi, I. H. M. (2006). Laboratory and field study of salt and water stress on pea plants (Doctoral dissertation, Al-Qadisiyah University).
Al-Harmoush, M. R. J. (2023). A physiological and genetic study of the response of grape seedlings to the addition of melatonin under salt stress (Master’s thesis, University of Kufa).
Al-Mousawi, H. A. H. H. (2022). Treatment of citrus rootstocks with melatonin exposed to salt stress and its effect on physiological and biochemical traits (Master’s thesis, University of Karbala).
Al-Rawi, K. M., & Khalaf Allah, A. A. (2000). Design and analysis of agricultural experiments. Mosul University Press.
Al-Shahwani, I. W. R. (2006). Effect of irrigation water salinity on the growth and yield of potato (Solanum tuberosum L.) and methods of reducing it (Doctoral dissertation, University of Baghdad).
Altaf, M. A.; Shahid , R. ;Ren, M. X. ;NAZ3, S. ; Altaf , M .M. ; Qadir ,A. ;Anwar, M. ; Shakoor, A. and Hayat , F. (2020). Exogenous melatonin enhances salt stress tolerance of tomato seedlings .Biologia Plantarum,64:604-615 .
Altaf, M. A.; Sharma, N. ; Singh, J. ; Samota, M. K. ; Sankhyan, P. ; Singh, B. ; Kumar , A. ; Naz , S. ; Lal , M. K. ; Tiwari , R. K. and Kumar , R. (2023). Mechanistic insights on melatonin-mediated plant growth regulation and hormonal cross-talk process in solanaceous vegetables. Sci. Hortic. 308, 111570. https://doi.org/10.1016/j.scienta.2022.111570 .
Al-Wahaibi, M. H. (2009). Salinity and antioxidants: A brief review. Saudi Journal of Biological Sciences, 16(3), 3-14.
Arnao, M. B., and Hernández-Ruiz, J. (2019). Melatonin: a new plant hormone and/or a plant master regulator?. Trends in Plant Science, 24(1), 38-48.
Ashraf, M. and Foolad , M. R. (2005). Pre-sowing seed treatment-ashotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv.Agron.,88: 223-271.
Askar, H. M. (2011). Washingtonia palm. Scientific Bulletin. Retrieved from http://www.uaepigeon./vb/show
Cha-Um, S. ; Yooyongwech, S. and Supaibulwatana, K. (2010). Water deficit stress in the reproductive stage of four indica rice (Oryza sativa L.) genotypes. Pak. J. Bot., 42 (5):3387-3398.
Chinnusamy, V. ; Jagendorf, A. and Zhu, J. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45: 437-448.
Daroui, E. A. ; Boukroute, A. ; Kouddane, N. E., and Berrichi, A. (2013). Effet de la salinité sur la germination et la croissance in vitro du Washingtonia filifera L. Nature & Technology, (8), 32A.
Dubois, M.; K.M.Grilles ; J. K. Hamiltor; D. A. Rebers and F. Smith (1956). Colorimetric method for determination of sugurs and related Substances . Anal.chem.28:350-356.
Ekbiç, H. B. and Yorulmaz, U. (2023). Effect of Foliar Salicylic Acid Application on Salinity Resistance of Some Grapevine Rootstocks. Erwerbs-Obstbau, 1-9. https://doi.org/10.1007/s10341-023-00898-5
Gao, T.; Liu, X.; Tan, K.; Zhang, D.; Zhu, B.; Ma, F. and Li, C. (2022). Introducing melatonin to the horticultural industry: Physiological roles, potential applications, and challenges. Hort. Res. Genom. 187, 627.
Golezani, K. G. ; Salmasi, S. Z. and Dastborhan, S. (2011). Changes in essential oil content of dill (Anethum graveolens) organs under salinity stress,Journal of Medicinal Plants Research. 5(14) : 3142-3145.
Gong, X. ; Shi, S.; Dou, F.; Song, Y. and Ma, F. (2017). Exogenous melatonin alleviates alkaline stress in malus hupehensis rehd. by regulating the biosynthesis of polyamines. Molecules 22, 1542. doi:10.3390/molecules22091542 .
Goodwin, T.W. (1976). Chemistry and biochemistry of plant pigment. 2nd edn. Academic Press, New York,:373p.
Hoque, M. N.; Tahjib-Ul-Arif, M.; Hannan, A. ; Sultana, N. ; Akhter, S. ; Hasanuzzaman, M. ; Akter, F. ; Hossain , M. S. ; Abu Sayed , M. ; Hasan , M. T. ; Skalicky , M. ; Li , X. and Brestič , M.(2021). Melatonin modulates plant tolerance to heavy metal stress: morphological responses to molecular mechanisms. Int. J. Mol. Sci. 22, 11445. https://doi:10.3390/ijms222111445
Hu, C. H. ; Zheng, Y. ; Tong, C. L. and Zhang, D. J. (2022). Effects of exogenous melatonin on plant growth, root hormones and photosynthetic characteristics of trifoliate orange subjected to salt stress. Plant Growth Regulation, 97(3), 551-558.
Jan, S. ; Singh, B. ; Bhardwaj, R. ; Singh, R. ; Mansoor, S. and Ahmad, P. (2022). Recent advances on the pragmatic roles of phytomelatonin and its exogenous application for abiotic stress management in plants. J. Plant Growth Regul., 1–16. https://doi:10.1007/s00344-022-10766-3.
Jawad, D. H. (2022). The effect of spraying potassium silicate on the growth of seedlings of three American grape varieties under salt stress (Doctoral dissertation, Al-Furat Al-Awsat Technical University).
Johnson (1998) .Washingtonia filifera .2006 IUSN red list of threatened species IUCN 2006,rettrived on 11 may 2006.
Kamiab, F. (2020). Exogenous melatonin mitigates the salinity damages and improves the growth of pistachio under salinity stress. Journal of plant nutrition, 43(10), 1468-1484.
Mirás-Avalos, J. M. and D. S. Intrigliolo (2017). Grape Composition under Abiotic Constrains: Water Stress and Salinity. Front Plant Sci., 8, 851.doi:10.3389/fpls.2017.00851.
Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell and Env.,25:239-250.
Nikee, E. ; Pazoki, A. and Zahedi , H.(2014). Influences of ascorbic acid and gibberllin on alleviation of salt stress in summer savory (Satureja hortesis L.) International Journal of Biosciences ,5(4):245-255.
Parihar, P.; Singh, S.; Singh, R.; Singh, V. P. and Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental science and pollution research, 22, 4056-4075.
Sadik, K.; Al-Taweel, S.; Dhyeab, N. S. and Khalaf, M. Z. (2011). New computer program for estimating leave area of several vegetable crops. American. Eurasian Journal of Sustainable Agriculture,5(2):304-309.
Salem, A.T.; Rashed , M. A. ; Abdel-Mohsen , M.A. and Abdelfattah, M.A. (2020). Growth and morphology of SO4 grapevine rootstock (V.berlandieri X V.reparia) as affected by different levels of Salinity. Plant Archives, 20(Supplement 1) : 945-950.
Sevengor, S.; Yasar, F.; Kusvuran, S. and Ellialtioglu, S. (2011). The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. African Journal of Agricultural Research, 6(21): 4920-4924.
Simón , M. D.; Nieves-Cordones, M. and Nieves, M. (2010). Differences in growth and ornamental parameters between young Chamaerops humilis L. and Washingtonia robusta H. Wendl palm trees in response to salinity. The Journal of Horticultural Science and Biotechnology, 85(1), 7-11.
Troll, W. and Lindsley , J.( 1955). A photometric method for the determination of Prolin . Journal of Biological Chemistry , 215:655-660.
Tuteja, N . (2005). Unwinding after high salinity stress. II. development of salinity tolerant plant without affecting yield .plant J. India,24 : 219-229.
Zhang, N.; Sun, Q.; Zhang, H.; Cao, Y.; Weeda, S. ; Ren, S. and Guo, Y.D.(2015). Roles of melatonin in abiotic stress resistance in plants .J.Exp. Bot.,66(3): 647– 656.
Zhong, L. ; Lin, L. ; Yang, L. ; Liao, M. A. ; Wang, X. ; Wang, J., and Tang, Y. (2020). Exogenous melatonin promotes growth and sucrose metabolism of grape seedlings. PLoS One, 15(4), e0232033.
Zhou‐Tsang, A.; Wu, Y. ; Henderson, S. W. ; Walker, A. R. ; Borneman, A. R. ; Walker, R. R. and Gilliham, M. (2021). Grapevine salt tolerance. Australian Journal of Grape and Wine Research, 27(2), 149-168.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.