Therapeutic Benefits of  Whey Protein

Authors

  • sadiq jaafir Agriculture, University of Kufa, Al-Najaf
  • salah mahdi College of Agriculture, University of Kufa, Al-Najaf 54001, Iraq.

DOI:

https://doi.org/10.54174/vpapcn87

Keywords:

Protein, hepatitis B

Abstract

Whey, a milk-based protein complex, is being promoted as a functional food with several health advantages. Alpha-lactalbumin, betalactoglobulin, lactoferrin, glycomacropeptide, and immunoglobulins are among the biological components of whey that exhibit a variety of immune-boosting characteristics. Whey can also function as a chelating agent, antiviral, antibacterial, hypolipidemic, antihypertensive, anticancer, and antioxidant. The conversion of the amino acid cysteine into glutathione, a strong intracellular antioxidant, is believed to be the main way that whey works. Whey has been successfully used in several clinical trials as an antibacterial agent and to treat cancer, HIV, hepatitis B, cardiovascular disease, and osteoporosis. Additionally, whey protein has shown promise in improving workout performance.

Downloads

Download data is not yet available.

References

- Gill, H. R. K., & Cross, M. L. (2000). Bovine milk: a unique source of immunomodulatory ingredients for functional foods In: Buttriss J, Saltmarsh M.(eds.) Functional foods II-claims and evidence.‏

- Walzem, R. L., Dillard, C. J., & German, J. B. (2002). Whey components: millennia of evolution create functionalities for mammalian nutrition: what we know and what we may be overlooking. Critical reviews in food science and nutrition, 42(4), 353-375.‏

- Keri Marshall, N. (2004). Therapeutic applications of whey protein. Alternative medicine review, 9(2), 136-156.‏

- Sarkar, A., Chakrabarty, S., & Debnath, S. (2020). A new way to treatment various diseases by whey protein—A review. International Journal of Pharmacy and Engineering (IJPE), 8(2), 910-923.‏

- Solak, B. B., & Akin, N. (2012). Health benefits of whey protein: a review. Journal of Food Science and Engineering, 2(3), 129.‏

- Tunick, M. H. (2008). Whey protein production and utilization: a brief history. Whey processing, functionality and health benefits, 1-13.‏

- Daenzer, M., Petzke, K. J., Metges, C. C., & Bequette, B. J. (2001). Whole-body nitrogen and splanchnic amino acid metabolism differ in rats fed mixed diets containing casein or its corresponding amino acid mixture. The Journal of nutrition, 131(7), 1965-1972.‏

- Anthony, J. C., Anthony, T. G., Kimball, S. R., & Jefferson, L. S. (2001). Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. The Journal of nutrition, 131(3), 856S-860S.‏

- Pierce, A., Colavizza, D., Benaissa, M., MAES, P., Tartar, A., Montreuil, J., & Spik, G. (1991). Molecular cloning and sequence analysis of bovine lactotransferrin. European journal of biochemistry, 196(1), 177-184.‏

- Steijns, J. M., & Van Hooijdonk, A. C. M. (2000). Occurrence, structure, biochemical properties and technological characteristics of lactoferrin. British Journal of Nutrition, 84(S1), 11-17.‏

- Levay, P. F., & Viljoen, M. (1995). Lactoferrin: a general review. Haematologica, 80(3), 252-267.

- Bonang, G., Monintja, H. E., & Sujudi, D. V. D. W. (2000). Influence of breastmilk on the development of resistance to intestinal colonization in infants born at the Atma Jaya Hospital, Jakarta. Scandinavian journal of infectious diseases, 32(2), 189-196.‏

- Kelly, G. S. (2003). Bovine colostrums: a review of clinical uses. Alternative Medicine Review, 8(4).‏

- Kulczycki, Jr, A., & MacDermott, R. P. (1985). Bovine IgG and human immune responses: Con A-induced mitogenesis of human mononuclear cells is suppressed by bovine IgG. International Archives of Allergy and Immunology, 77(1-2), 255-258.‏

- Losso, J. N., Dhar, J., Kummer, A., Li‐Chan, E., & Nakai, S. (1993). Detection of antibody specificity of raw bovine and human milk to bacterial lipopolysaccharides using PCFIA. Food and Agricultural Immunology, 5(4), 231-239.‏

- Yolken, R. H., Losonsky, G. A., Vonderfecht, S., Leister, F., & Wee, S. B. (1985). Antibody to human rotavirus in cow's milk. New England Journal of Medicine, 312(10), 605-610.‏

- Guimont, C., Marchall, E., Girardet, J. M., Linden, G., & Otani, H. (1997). Biologically active factors in bovine milk and dairy byproducts: influence on cell culture. Critical Reviews in Food Science & Nutrition, 37(4), 393-410.‏

- KONGSHAVN, P. A. (1982). Influence of dietary proteins on the immune system of mice. J. Nutr, 112, 1747-1755.‏

- Bounous, G., & Kongshavn, P. A. (1985). Differential effect of dietary protein type on the B-cell and T-cell immune responses in mice. The Journal of nutrition, 115(11), 1403-1408.‏

- Bjorck L. Antibacterial Björck, L. (1978). Antibacterial effect of the lactoperoxidase system on psychrotrophic bacteria in milk. Journal of Dairy Research, 45(1), 109-118.‏

- Kussendrager, K. D., & Van Hooijdonk, A. C. M. (2000). Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications. British Journal of Nutrition, 84(S1), 19-25.‏

- Brody, E. P. (2000). Biological activities of bovine glycomacropeptide. British Journal of Nutrition, 84(S1), 39-46.‏

- Saka, M., Tuzun, A., Ates, Y., Bagci, S., Karaeren, N., & Dagalp, K. (2004). Acute pancreatitis possibly due to arginine use: a case report. Turkish Journal of Gastroenterology, 15(1), 56-58.‏

- Bounous, G., Gervais, F., Amer, V., Batist, G., & Gold, P. (1989). The influence of dietary whey protein on tissue glutathione and the diseases of aging. Clin Invest Med, 12(6), 343-9.‏

- Crinnion, W. J. (2000). Environmental medicine, part 2-health effects of and protection from ubiquitous airborne solvent exposure. Alternative Medicine Review: a Journal of Clinical Therapeutic, 5(2), 133-143.‏

- Crinnion, W. J. (2000). Environmental medicine, part 4: pesticides--biologically persistent and ubiquitous toxins. Alternative Medicine Review, 5(5), 432-432.‏

- Hojo, Y. (1986). Sequential study on glutathione peroxidase and selenium contents of human milk. Science of the total environment, 52(1-2), 83-91.‏

- Nishiya, K., & Horwitz, D. A. (1982). Contrasting effects of lactoferrin on human lymphocyte and monocyte natural killer activity and antibody-dependent cell-mediated cytotoxicity. Journal of immunology (Baltimore, Md.: 1950), 129(6), 2519-2523.‏

- Gahr, M., Speer, C. P., Damerau, B., & Sawatzki, G. (1991). Influence of lactoferrin on the function of human polymorphonuclear leukocytes and monocytes. Journal of leukocyte biology, 49(5), 427-433.‏

- Sawatzki, G., & Rich, I. N. (1989). Lactoferrin stimulates colony stimulating factor production in vitro and in vivo. Blood cells, 15(2), 371-385.‏

- McCormick, J. A., Markey, G. M., & Morris, T. C. M. (1991). Lactoferrin‐inducible monocyte cytotoxicity for K562 cells and decay of natural killer lymphocyte cytotoxicity. Clinical & Experimental Immunology, 83(1), 154-156.‏

- Shah, N. P. (2000). Effects of milk-derived bioactives: an overview. British Journal of Nutrition, 84(S1), 3-10.‏

- Tomita, M., Wakabayashi, H., Yamauchi, K., Teraguchi, S., & Hayasawa, H. (2002). Bovine lactoferrin and lactoferricin derived from milk: production and applications. Biochemistry and Cell Biology, 80(1), 109-112.‏

- Machnicki, M. I. C. H. A. L., Zimecki, M. I. C. H. A. L., & Zagulski, T. (1993). Lactoferrin regulates the release of tumour necrosis factor alpha and interleukin 6 in vivo. International journal of experimental pathology, 74(5), 433.‏

- Sundberg, J., Ersson, B., Lönnerdal, B., & Oskarsson, A. (1999). Protein binding of mercury in milk and plasma from mice and man—a comparison between methylmercury and inorganic mercury. Toxicology, 137(3), 169-184.‏

- Ha, E., & Zemel, M. B. (2003). Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people. The Journal of nutritional biochemistry, 14(5), 251-258.‏

- Mullally, M. M., Meisel, H., & FitzGerald, R. J. (1996). Synthetic peptides corresponding to a-lactalbumin and b-lactoglobulin sequences with angiotensin-1-converting enzyme inhibitory activity. Biological Chemistry-Hoppe Seyler, 377(4), 259-260.‏

- Pihlanto-Leppälä, A. N. N. E., Koskinen, P., Piilola, K. A. T. I., Tupasela, T., & KORHONEN, H. (2000). Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptides. Journal of Dairy Research, 67(1), 53-64.‏

- Nagaoka, S. (1996). Studies on regulation of cholesterol metabolism induced by dietary food constituents or xenobiotics.‏

- Roth-Walter, F., Afify, S. M., Pacios, L. F., Blokhuis, B. R., Redegeld, F., Regner, A., ... & Jensen-Jarolim, E. (2021). Cow’s milk protein β-lactoglobulin confers resilience against allergy by targeting complexed iron into immune cells. Journal of Allergy and Clinical Immunology, 147(1), 321-334.‏

Downloads

Published

2024-12-12

Issue

Section

Articles

How to Cite

jaafir, sadiq, & mahdi, salah. (2024). Therapeutic Benefits of  Whey Protein. University of Thi-Qar Journal of Agricultural Research, 13(2), 20-27. https://doi.org/10.54174/vpapcn87