INNATE IMMUNE RESPONSES OF ILT VIRUS INFECTION IN LAYER AT PRODUCTION STAGE IN IRAQ
DOI:
https://doi.org/10.54174/utjagr.v13i1.295Abstract
Since 2011, there have been epidemics of respiratory infection in Iraq's laying hen farms, including hemorrhage tracheitis, which closely resembles laryngotracheitis and exhibits symptoms such as symptoms and lesions, respiratory issues, and swelling. Infectious laryngotracheitis (ILT) in layers hen farms in Iraq had to be molecularly identified and determined, together with viral load and innate immune responses of gene transcription (INF-γ, IL1, IL6, and IL10). A total of 40 samples 20 trachea and 20 lungs were taken from various suspect contaminated layer flocks of Iraqi farms (age: 33 weeks). Real-time PCR results showed that 10 samples from both tissues tested positive for the ILT virus. The highest viral load, 5.52×103 copies/L viral nucleic acid, was found in tracheal tissue at 7 dpi, whereas the lowest viral load, 1.65×103 copies/L viral nucleic acid, was found in lung tissues. At 3 and 7 days after infection, the expression of INF-γ, IL1 and IL6 was significantly higher there in tracheal tissues (P≤0.05) than in the lung tissues, indicating a down regulation of these three molecules. In both organs at the same time, there was no up regulation of IL10. The findings of this study show that ILTv up-regulates the transcription of several cytokines in the trachea, including INF-γ, IL1, and IL6, during various stages of the cytokine production process.
Downloads
References
Bagust, T., Jones, R. & Guy, J. (2000). Avian infectious laryngotracheitis. Revue scientifique et technique (International Office of Epizootics). 19(2):483-92. DOI: 10.20506/rst.19.2.1229
Bose, S., Kar, N., Maitra, R., DiDonato, J.A., & Banerjee, A.K. (2003). Temporal activation of NF-κB regulates an interferon-independent innate antiviral response against cytoplasmic RNA viruses. Proceedings of the National Academy of Sciences. 100(19):10890-5. DOI: 10.1073/pnas.1832775100
Coppo, M.J., Devlin, J.M., Legione, A.R., Vaz, P.K., Lee, S.W., & Quinteros, J.A., (2018). Infectious laryngotracheitis virus viral chemokine-binding protein glycoprotein G alters transcription of key inflammatory mediators in vitro and in vivo. Journal of Virology. 92(1):1534-17. DOI: 10.1128/JVI.01534-17
Coppo, M.J., Noormohammadi, A.H., Browning, G.F. & Devlin JM. (2013). Challenges and recent advancements in infectious laryngotracheitis virus vaccines. Avian Pathology.;42(3):195-205. DOI: 10.1080/03079457.2013.800634
Devlin, J., Browning, G., Hartley, C., Kirkpatrick, N., Mahmoudian, A. & Noormohammadi, A, (2006). Glycoprotein G is a virulence factor in infectious laryngotracheitis virus. Journal of general virology. 87(10):2839-47. DOI: 10.1099/vir.0.82194-0
Ecco, R., Brown, C., Susta, L., Cagle, C., Cornax, I., & Pantin-Jackwood, M. (2011). In vivo transcriptional cytokine responses and association with clinical and pathological outcomes in chickens infected with different Newcastle disease virus isolates using formalin-fixed paraffin-embedded samples. Veterinary immunology and immunopathology. 141(3-4):221-9. DOI: 10.1016/j.vetimm.2011.03.002
Fischer, A.H., Jacobson, K.A., Rose, J., & Zeller, R. (2008). Hematoxylin and eosin staining of tissue and cell sections. Cold spring harbor protocols. (5):4986. DOI:10.1101/pdb.prot073411
Göbel, T.W., Schneider, K., Schaerer, B., Mejri, I., Puehler, F., & Weigend, S. (2003). IL-18 stimulates the proliferation and IFN-γ release of CD4+ T cells in the chicken: conservation of a Th1-like system in a nonmammalian species. The Journal of Immunology. 171(4):1809-15. DOI: 10.4049/jimmunol.171.4.1809
Gowthaman, V., Kumar, S., Koul, M., Dave, U., Murthy, T.G.K. & Munuswamy, P. (2020). Infectious laryngotracheitis: Etiology, epidemiology, pathobiology, and advances in diagnosis and control–a comprehensive review. Veterinary Quarterly.;40(1):140-61. DOI: 10.1080/01652176.2020.1759845
Gyorfy, Z., Ohnemus, A., Kaspers, B., Duda, E., & Staeheli, P. (2003). Truncated chicken interleukin-1 β with increased biologic activity. Journal of interferon & cytokine research. 23(5):223-8. DOI: 10.1089/107999003321829935
Haddadi, S., Thapa, S., Kameka, A., Hui, J., Czub, M., Nagy, E., (2015). Toll-like receptor 2 ligand, lipoteichoic acid is inhibitory against infectious laryngotracheitis virus infection in vitro and in vivo. Developmental & Comparative Immunology. 48(1):22-32. DOI: 10.1016/j.dci.2014.08.011
Heidari, M., Huebner, M., Kireev, D., & Silva, R.F. (2008). Transcriptional profiling of Marek’s disease virus genes during cytolytic and latent infection. Virus Genes. 36:383-92. DOI 10.1007/s11262-008-0203-7
Kaiser, A., Bercovici, N., Abastado, J.P., & Nardin, A. (2003). Naive CD8+ T cell recruitment and proliferation are dependent on stage of dendritic cell maturation. European journal of immunology. 33(1):162-71. DOI:10.1002/immu.200390019
Lee, J.Y., Song, J.J., Wooming, A., Li, X., Zhou, H., & Bottje, W.G., (2010). Transcriptional profiling of host gene expression in chicken embryo lung cells infected with laryngotracheitis virus. BMC genomics. 11(1):1-15. DOI: 10.1186/1471-2164-11-445
Mackay, I.M. (2004). Real-time PCR in the microbiology laboratory. Clinical microbiology and infection. 10(3):190-212. DOI: 10.1111/j.1198-743x.2004.00722
Poh, T.Y., Pease, J., Young, J.R., Bumstead, N., Kaiser, P. (2008). Re-evaluation of chicken CXCR1 determines the true gene structure: CXCLi1 (K60) and CXCLi2 (CAF/interleukin-8) are ligands for this receptor. Journal of Biological Chemistry. 283(24):16408-15. DOI: 10.1074/jbc.M800998200
Preis, I.S., Braga, J.F., Couto, R.M., Brasil, B.S., Martins, N.R., & Ecco, R. (2013). Outbreak of infectious laryngotracheitis in large multi-age egg layer chicken flocks in Minas Gerais, Brazil. Pesquisa Veterinária Brasileira. 33:591-6. DOI: 10.1590/S0100-736X2013000500007
Reddy, V.R., Steukers, L., Li, Y., Fuchs, W., Vanderplasschen, A., & Nauwynck, H.J. (2014). Replication characteristics of infectious laryngotracheitis virus in the respiratory and conjunctival mucosa. Avian pathology.;43(5):450-7. DOI: 10.1080/03079457.2014.956285
Rue, C.A., Susta, L., Cornax, I., Brown, C.C., Kapczynski, D.R., & Suarez, D.L., (2011). Virulent Newcastle disease virus elicits a strong innate immune response in chickens. Journal of general virology. 92(4):931-9. DOI: 10.1099/vir.0.025486-0
Schaad, N.W., & Frederick, (2002). R.D. Real-time PCR and its application for rapid plant disease diagnostics. Canadian journal of plant pathology. 24(3):250-8. DOI:10.1080/07060660209507006
Schat, K.A., Kaspers, B., & Kaiser, P. (2014). Avian immunology: Elsevier Philadelphia, USA; 2014.DOI:10.1016/B978-0-12-396965-1.00009-1
Schmittgen, T.D., & Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nature protocols. 3(6):1101-8. DOI: 10.1038/nprot.2008.73
Vagnozzi, A.E., Beltrán, G., Zavala, G., Read, L., Sharif, S., & García, M. (2018). Cytokine gene transcription in the trachea, Harderian gland, and trigeminal ganglia of chickens inoculated with virulent infectious laryngotracheitis virus (ILTV) strain. Avian Pathology. 47(5):497-508. DOI: 10.1080/03079457.2018.1492090
Valones, M.A.A., Guimarães, R.L., Brandão, L.A.C., Souza, P.R.E., Carvalho, A. & Crovela, S. (2009). Principles and applications of polymerase chain reaction in medical diagnostic fields: a review. Brazilian Journal of Microbiology. 40:1-11. DOI: 10.1590/S1517-83822009000100001
Wu, Z., Hu, T., Rothwell, L., Vervelde, L., Kaiser, P., Boulton, K. (2016). Analysis of the function of IL-10 in chickens using specific neutralising antibodies and a sensitive capture ELISA. Developmental & Comparative Immunology. 63:206-12. DOI: 10.1016/j.dci.2016.04.016
Zhao, Y., Kong, C., Cui, X., Cui, H., Shi, X., & Zhang, X., (2013). Detection of infectious laryngotracheitis virus by real-time PCR in naturally and experimentally infected chickens. PloS one. 8(6):67598. DOI: 10.1371/journal.pone.0067598.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Mushtaq Al-Zuhariy, Basim Manswr, Amjed Hussein, Saad Mohammed Hammad
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.