Investigating the interaction between some of Bipolaris sorokiniana’s toxins and the Gα Subunit of the Wheat G-Protein using bioinformatics tools

Authors

DOI:

https://doi.org/10.54174/utjagr.v12i1.253

Abstract

Spot blotch disease of wheat, caused by the fungus Bipolaris sorokiniana (Sacc.) Shoem., produces several toxins like:  prehelminthosporol, helminthosporol, helminthosporic acid, sorokinianin, Bipolaroxin. These toxins interact with the plant and thereby increase the symptoms of small dark lesions and huge yield losses in different regions around the world so there is an urgent need to decipher the molecular interaction between wheat and those toxins for in-depth understanding of host–pathogen interactions. In the present study, we have modeledthe three-dimensional structure of G-protein alpha subunit from Triticum aestivum as G-protein was shown that it is an important player behind the resistance to many plant diseases. Molecular docking studies were performed using the active site of the modeled G-protein alpha subunit from T. aestivumand some of fungus’s toxins followed by molecular dynamics (MD) simulation studies to explore the stability, conformational flexibility, and dynamic behavior. Protein-ligand interaction study revealed one H-bond formed by Lys302 and hydrophobic contacts formed by Tyr159, Gly162, Val167, Asp256, Gln257 and Ile298 with prehelminthosporol, Protein-ligand interaction study revealed H-bond formed three H-bonds formed by Tyr159, Gly162, and Asp256 and hydrophobic interactions formed by Ser160, Cys161, Ser162, Ile298, Lys302 and Val306 with helminthosporic acid. Protein-ligand interaction study revealed two H-bond formed by His172, Arg301 and hydrophobic interactions by Tyr159, Pro168, Asp169, Ile298 and Lys302 with sorokinianin. Protein-ligand interaction study revealed H-bond formed six H-bonds mainly formed by Glu29, Ser30, Lys32, and Ala177. In addition to H-bonds, hydrophobic contacts formed by Gly28, Gly31, Ser33, Thr34, Arg78, Val179, Thr181 and Gly209 with Bipolaroxin were also observed.

Downloads

Download data is not yet available.

References

- Acharya, K., Dutta, A.K., Pradhan, P., 2011. Bipolaris sorokiniana (Sacc.) Shoem.: the most destructive wheat fungal pathogen in the warmer areas. Aust. J. Crop Sci. 5, 1064–1071.

- Al-Sadi, A.M., 2021. Bipolaris sorokiniana-induced black point, common root rot, and spot blotch diseases of wheat: a review. Front. Cell. Infect. Microbiol.

- Assmann, S.M. Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell 2002, 14 (Suppl. S1), S355–S373.

- Bockus W, Bowden RL, Hunger RM, Morill, WL, Murray TD and Smiley RW (2010). Compendium of wheat diseases and pests. APS Press, St. Paul, Minnesota, Pp, 171.

- Briquet, M., Vilret, D., Goblet, P. et al. Plant Cell Membranes as Biochemical Targets of the Phytotoxin Helminthosporol. J Bioenerg Biomembr 30, 285–295 (1998).

- Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, et al. (2005) The Amber biomolecular simulation programs. J Comput Chem 26: 1668-1688.

- Chand R, Singh HV, Joshi AK, Duveiller E (2002). Physiological and morphological aspects of Bipolaris sorokiniana conidia surviving on wheat straw. Journal of Plant Pathology 18:328-332.

- Chen, J.H.; Linstead, E.; Swamidass, S.J.; Wang, D. and Baldi, P. (2007) Bioinformatics, 23(17), 2348-2351.

- Chen, J.; Swamidass, S.J.; Dou, Y.; Bruand, J. and Baldi, P. (2005) Bioinformatics, 21, 4133-4139.

- Chowdhury AK, Singh G, Tyagi BS, Ojha A, Dhar T, Bhattacharya PM (2013) Spot blotch disease of wheat–a new thrust area for sustaining productivity. J of Wheat res 5:1–11.

- Deepti Malviya, , Udai B. Singh, , Budheswar Dehury, , Prakash Singh, , Manoj Kumar,Shailendra Singh , Anurag Chaurasia , Manoj Kumar Yadav , Raja Shankar, Manish Roy, Jai P. Rai , Arup K. Mukherjee, Ishwar Singh Solanki, Arun Kumar, Sunil Kumar, and Harsh V. Singh . Novel Insights into Understanding the Molecular Dialogues between Bipolaroxin and the G_ and G_ Subunits of the Wheat Heterotrimeric G-Protein during Host–Pathogen Interaction. Antioxidant J 2022, 1-31.

- D. Mercado Vergnes, M.-E. Renard, E. Duveiller, H. Maraite, Effect of growth stage on host sensitivity to helminthosporol toxin and susceptibility to Cochliobolus sativus causing spot blotch on wheat, Physiological and Molecular Plant Pathology, Volume 68, Issues 1-3, 2006, Pages 14-21, ISSN 0885-5765.

- Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE (2012) Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys 41: 429-452.

- Duveiller E, Kandel YR, Sharma RC, Shrestha SM (2005). Epidemiology of foliar blights (spot blotch and tan spot) of wheat in the plains bordering the Himalayas. Phytopathology 95:248-256.

- FAO (2022). FAOSTAT (FAO) https://www.fao.org/faostat/en/#data/QCL/visualize .

- Fernandez MR and Jefferson PG (2004). Fungal populations in roots and crowns of common and durum wheat in Saskatchewan. Canadian Journal of Plant Pathology 26:325-334.

- Gonzalez MS and Trevathan LE (2000). Identity and pathogenicity of fungi associated with root and crown rot of soft red winter wheat grown on the upper coastal plain land resource area of Mississippi. Journal of Phytopathology 148:77-85.

- Goodsell, D.S.; Morris, G.M. and Olson, A.J. (1996) J. Mol. Recognit., 9(1), 1-5.

- Hagen SJ, Hofrichter J, Eaton WA (1995) Protein reaction kinetics in a roomtemperature glass. Science 269: 959-962.

- Hess B, van Der Spoel D, Lindahl E (2010) Gromacs user manual version 4.5.4. University of Groningen, Netherland.

- Huajian Zhang, Zhimou Gao, Xiaobo Zheng & Zhengguang Zhang (2012) The role of G-proteins in plant immunity, Plant Signaling & Behavior, 7:10, 1284-1288.

- Irwin, J.J. and Shoichet, B.K. (2005) J. Chem. Inf. Model, 45(1), 177-182.

- Jahani, M.; Aggarwal, R.; Gupta, S.; Sharma, S.; Dureja, P. Purification and characterization of a novel toxin from Bipolaris sorokiniana, causing spot blotch of wheat and analysis of variability in the pathogen. Cereal Res. Commun. 2014, 42, 252–261.

- Jones AM, Assmann SM. Plants: the latest model system for G-protein research. EMBO Rep 2004; 5:572 - 8.

- Joy, S.; Nair, P.S.; Hariharan, R. and Pillai, M.R. (2006) In Silico Biol., 6(6), 601-605.

- Llorente, F.; Alonso-Blanco, C.; Sanchez-Rodriguez, C.; Jorda, L.; Molina, A. ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J. 2005, 43, 165–180.

- Mehta, Y.R., 2014. Foliar and Stem Diseases, in: Mehta, Y.R. (Ed.), Wheat Diseases and Their Management. Springer, Cham, pp. 133–216.

- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K. and Olson, A.J. (1998) J. Comput. Chem., 19(14), 1639-1662.

- Morris, G. M. and Lim-Wilby, M. (2008) Molecular docking. Methods Mol. Biol., 443, 365–382.

- Muhammed MT, Aki-Yalcin E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem Biol Drug Des. 2019 Jan;93(1):12-20. doi: 10.1111/cbdd.13388. Epub 2018 Oct 8. PMID: 30187647Ohmura I, Morimoto G, Ohno Y, Hasegawa A, Taiji M. MDGRAPE-4: a special-purpose computer system for molecular dynamics simulations. Philos Trans A Math Phys Eng Sci. 2014;372 20130387

- Patel, J.S.; Sarma, B.K.; Singh, H.B.; Upadhyay, R.S.; Kharwar, R.N.; Ahmed,M. Pseudomonas fluorescens and Trichoderma asperellum Enhance Expression of G Subunits of the Pea Heterotrimeric G-protein during Erysiphe pisi Infection. Front. Plant Sci. 2016, 6, 1206.

- Perfus-Barbeoch, L.; Jones, A.M.; Assmann, S.M. Plant heterotrimeric G protein function: Insights from Arabidopsis and rice mutants. Curr. Opin. Plant Biol. 2004, 7, 719–731.

- Phan, C. S., Li, H., Kessler, S., Solomon, P. S., Piggott, A. M., and Chooi, Y. H. (2019). Bipolenins K–N: New sesquiterpenoids from the fungal plant pathogen Bipolaris sorokiniana. Beilstein. J. Org. Chem. 15, 2020–2028.

- Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, et al. (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26: 1781-1802.

- P. Gupta, et al. Functional implications of pH-induced conformational changes in the Sphingosine kinase 1 Spectrochim Acta Mol Biomol Spectrosc, 225 (2020), p. 117453.

- Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, et al. (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29: 845-854.

- Qader, M.M.; Kumar, N.S.; Jayasinghe, L.; Araya, H.; Fujimoto, Y. Bioactive sesquiterpenes from an endophytic fungus Bipolaris sorokiniana isolated from a popular medicinal plant Costus speciosus. Mycology 2017, 8,17–20.

- R.G. Swetha, S. Ramaiah, A. Anbarasu Molecular dynamics studies on D835N mutation in FLT3—its impact on FLT3 protein structure J Cell Biochem, 117 (6) (2016), pp. 1439-1445.

- Rosania, G.R.; Crippen, G.; Woolf, P.; States, D. and Shedden, K. (2007) Pharmac. Res., 24(10), 1791-1802.

- R. Pokhrel, et al. Molecular mechanisms of pore formation and membrane disruption by the antimicrobial lantibiotic peptide Mutacin 1140 Phys Chem Chem Phys, 21 (23) (2019), pp. 12530-12539.

- Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK, et al. Anton, a special-purpose machine for molecular dynamics simulation. Commun ACM. 2008;51:91–97.

- S. Pirhadi, A. Amani Molecular dynamics simulation of self-assembly in a nanoemulsion system Chem Pap (2020), pp. 1-6

- Suharsono, U.; Fujisawa, Y.; Kawasaki, T.; Iwasaki, Y.; Satoh, H.; Shimamoto, K. The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc. Natl. Acad. Sci. USA 2002, 99, 13307–13312.

- Thung L, Trusov Y, Chakravorty D, Botella JRG. Gγ1+Gγ2+Gγ3=Gβ: the search for heterotrimeric G-protein γ subunits in Arabidopsis is over. J Plant Physiol 2012; 169:542 – 5.

- Tolman JR, Al-Hashimi HM, Kay LE, Prestegard JH (2001) Structural and dynamic analysis of residual dipolar coupling data for proteins. J Am Chem Soc 123: 1416-1424.

- Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR. Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol. 2006;140(1):210–220.

- Trusov, Y.; Rookes, J.E.; Tilbrook, K.; Chakravorty, D.; Mason, M.G.; Anderson, D.; Chen, J.G.; Jones, A.M.; Botella, J.R. Heterotrimeric G Protein gamma subunits provide functional selectivity in Gβγ dimer signaling in Arabidopsis. Plant Cell 2007, 19, 1235–1250.

- Trusov, Y.; Jorda, L.; Molina, A.; Botella, J.R. G proteins and plant innate immunity. In Integrated G-Protein Signaling in Plants; Yalovsky, S., František, B., Alan, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 221–250.

- Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W. and Taylor, R.D. (2003) Proteins, 52(4), 609-623.

- Vitkup D, Ringe D, Petsko GA, Karplus M (2000) Solvent mobility and the protein 'glass' transition. Nat Struct Biol 7: 34-38.

- V. Rajendran, C. Gopalakrishnan, R. Sethumadhavan Pathological role of a point mutation (T315I) in BCR-ABL1 protein—a computational insight J Cell Biochem, 119 (1) (2018), pp. 918-925.

- Wishart, D.S. (2008) Pharmacogenetics, 9(8), 1155-1162.

- Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z. and Woolsey, J. (2006) Nucleic Acids Res., 34(D), 668-672.

- Yadav, B., Singh, R., and Kumar, A. (2015). Management of spot blotch of wheat using Fungicides. Bio-agents and Botanicals. Afr. J. Agric. Res. 10, 2494–2500. doi: 10.5897/AJAR2013.8196.

- Yadav DK, Islam SMS, Tuteja N. Rice heterotrimeric G-protein Gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress. Plant Signal Behav 2012; 7.

Downloads

Published

2023-06-15

Issue

Section

Articles

How to Cite

Leen Dayoub, Yanal Alkuddsi, & Nasser Thallaj. (2023). Investigating the interaction between some of Bipolaris sorokiniana’s toxins and the Gα Subunit of the Wheat G-Protein using bioinformatics tools. University of Thi-Qar Journal of Agricultural Research, 12(1), 181-200. https://doi.org/10.54174/utjagr.v12i1.253