نفِذت هذه الدراسة في الظلة الخشبية التابعة لقسم البستنة وهندسة الحدائق - كلية الزراعة والأهوار - جامعة ذي قار للموسم الزراعي 2018-2019 لمعرفة تأثير إضافة حامض الهيميك وال الحديد على بعض صفات النمو الخضري لنبات التمتبة. أجريت تجربة أصل بلاستيكية باستخدام عاملين في الاعمال الأول حامض الهيميك والعامل الثاني عنصر الحديد وبثلاث مكررات في تربة مزجية غرينية باستخدام تصميم RCBD . تضمنت الدراسة سبعة وعشرون وحدة؛ اتجهت تجريبية ناتجة من توافق ثلاث مستويات من حامض الهيميك هي (H0) بدون إضافة و (H1) بتركيز ه20% و (H2) بتركيز 75%. وثلاث مستويات من الحديد وهي (F0) غم 6 F1 4 غم F2 4 غم (أصيص1-). تفوقت المعاملة H2 على معاملة H1 و على معاملة المقارنة في كل من ارتفاع النبات وعدد التفرعات والوزن الريحي للنبات والوزن الجاف للمجموع الخضري و محتوى الكلونول. وقد سجلت متوسطا بلغ (17.76 سم, 20.14, 9.00 غم نبات-1, 4.429 غم نبات-1, 293 ملم/لتر) على الترتيب. تفوقت معاملة F1 على معاملة F0 و على معاملة المقارنة في كل من ارتفاع النبات وعدد التفرعات و الوزن الجاف للمجموع الخضري و محتوى الكلونول. وقد سجلت متوسطا بلغ (27.73 سم, 8.96, 20.35 غم نبات-1, 362 ملم/لتر) على الترتيب. بينما تفوقت معاملة F1 على معاملة F2 و على معاملة المقارنة في كل من ارتفاع النبات وعدد التفرعات و الوزن الريحي للمجموع الخضري الذي بلغ (4.414 غم نبات-1, 33.80 غم نبات-1, 12.47, 24.43 ملم/لتر) على الترتيب. وكان انخفاض فاصل بين F0 و H0 بالمقارنة مع F1 و H1 كفلاً لتفوق معاملة المحتوى الكلونول للنعناع في المحاكاة في محتوى الكلونول والوزن الريحي للمجموع الخضري الذي بلغ (33.80 غم نبات-1, 12.47, 24.43 ملم/لتر).
مجلة جامعة ذي قار للبحوث الزراعية المجلد (10) العدد (2) لسنة (2020)

المقدمة

المادة والطرق العلمية

نفذت تجربة أصص في الظلة الخشبية التابعة إلى كنيسة الزراعة في جامعة ذي قار في تربة ذات نسجة مزيجية غرينية لدراسة تأثير حامض الهيوميك والرطب في بعض صفات النمو الخضري لنباتات الشبنت. نفذت كتجربة عملية مشتركة باستخدام تصميم RCBD، وثلاثة مكررات. تم استخدام أصص سعة 7 كغم تربة وأضيفت النبتة بوزن 7 كغم لكل أصص. تم زراعة بذور نبات الشبنت وحاجة 10 بذور لكل أصص بتاريخ 22/12/2018. ثم خفت البادرات إلى نباتات بعد أسبوعين من النمو، أضيفت الأسمدة على عدة دفعات، دفعة واحدة كل أسبوع بالنسبة لحامض الهيوميك أما سماد الحديد فأضيف دفعة واحدة كل شهر، وتمت عملية الري حسب الحاجة مع إجراء عمليات مراقبة النباتات. من تعشيب وتكافح حتى نهاية التجربة. أخذت عينات عشوائية من تربة الدراسة ثم زجت للحصول على عينة مركبة لغرض تقدير بعض صفات النبتة الفيزيائية والكيميائية وكمما وضح في جدول (1).

جدول (1) بعض الصفات الكيميائية و الفيزيائية لتربي الدراسة قبل الزراعة

<table>
<thead>
<tr>
<th>الصفة</th>
<th>الوحدة القياس</th>
<th>القيمة</th>
</tr>
</thead>
<tbody>
<tr>
<td>درجة تفاعل النبتة (pH)</td>
<td></td>
<td>7.12</td>
</tr>
<tr>
<td>الاصطناعية الكهربائية (EC)</td>
<td></td>
<td>3.86</td>
</tr>
<tr>
<td>المادة العضوية (O.M)</td>
<td></td>
<td>6.70</td>
</tr>
<tr>
<td>السعة النباتية الكاتيونية (CEC)</td>
<td></td>
<td>9.31</td>
</tr>
<tr>
<td>كاربونات الكالسيوم</td>
<td></td>
<td>320</td>
</tr>
<tr>
<td>الرمل</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>الغرين</td>
<td></td>
<td>669</td>
</tr>
</tbody>
</table>
عوامل التجربة: شملت التجربة على عاملين:
العامل الأول: حامض الهيودنوك ويبلغ متوسط مستويات (0, 50, 75)% واخذت الرموز
(H2, H1, H0) على التوالي.
العامل الثاني: سماد الحديد ويبلغ متوسط مستويات (0, 4, 6) غم واخذت الرموز
(F2, F1, F0) على التوالي.
وتكونت التجربة من 9 عاملات وكما يأتي:
= T7 , H2F0 = T6 , H1F2 = T5 , H1F1 = T4 , H1F0 = T3 , H0F2 = T2 , H0F1 = T1 , H0F0 = T0
H2F2 = T8 , H2F1

4.3. الصفات المدروسة

1- ارتفاع النبات (سم): يعد اكتمال مرحلة التزهير تم قياس متوسط ارتفاع النبات لكل وحدة تجريبية عن طريق حساب متوسط خمسة نباتات باستعمال شريط القياس من مستوى سطح الكرة إلى أعلى قمة نامية في النبات.

2- عدد الكراعات: تم حسابها حفظيا كمتوسط لخمسة نباتات من كل وحدة تجريبية.

3- الوزن الجاف للنباتات (غرم نبات-1): قست النباتات فوق سطح الكرة واحذ الوزن لها بواسطة الوزن.

4- الالساق (غرم نبات-1): تم وزن الجزاء النباتي فوق سطح الكرة بعد التجفيف بالفرن الكهرบาลني بدرجة حرارة 70 مئوية واخذ الوزن بواسطة الميزان الحساس.

5- محتوى الكلوروفيل (ملغم / لتر): أخذ 10 ملم من الاوراق وسحقها ب 10 مل من الاستيتون ثم وضع بجهاز الطرد المركزي لمدة 5 دقائق على سرعة 3000 دورة / دقيقة وسجلت قراءة الطيف الضوئي للأطوال الموجية 663 و 665 نانومتر باستخدام جهاز Spectrophotometer وقد مجدحت محتوى الكلوروفيل الكلى وذلك

\[D = 8.02 \times \text{D (665)} + 20.2 \times \text{D (665)} \times 663 \]

التحليل الإحصائي:
حللت البيانات إحصائيا حسب طريقة تحليل التباين باستعمال برنامج Genstat وتم اختيار فرق معنوي على مستوى 0.05 للمقارنة بين المتوسطات الحسابية للمعاملات.
نتائج

ارتفاع انثاث (سم):

تشير النتائج في جدول 2 وجود فروق معنوية بين متوسطات معاملات إضافة حامض الهيوميك إذ تفوق معاملة إضافة 75% H2 بزيادة معنوية في ارتفاع النبات قياسا بمعاملة المقارنة H0 والتي بلغت 27.76 و 23.07 سم. على الترتيب، كما أظهرت النتائج أيضا وجود فروق معنوية بين متوسطات المعاملات لإضافة سماد الحديد إذ تفوقت المعاملة F1 معنويًا وبلغ أعلى ارتفاع للنبات 27.73 سم قياسا بمعاملة المقارنة التي بلغ فيها ارتفاع النبات 22.49 سم. وأن الداخل بين حامض الهيوميك وسماد الحديد كان له تأثير معنوي على معدل ارتفاع النبات، إذ تفوقت المعاملة بإعطاء أعلى ارتفاع نبات بلغ 33.80 سم.

جدول (2) تأثير إضافة حامض الهيوميك وسماد الحديد في ارتفاع النبات (سم)

<table>
<thead>
<tr>
<th>المتوسط</th>
<th>F2</th>
<th>F1</th>
<th>F0</th>
<th>F/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.07</td>
<td>24.00</td>
<td>27.20</td>
<td>18.00</td>
<td>H0</td>
</tr>
<tr>
<td>24.02</td>
<td>25.13</td>
<td>22.20</td>
<td>24.73</td>
<td>H1</td>
</tr>
<tr>
<td>27.76</td>
<td>24.73</td>
<td>33.80</td>
<td>24.73</td>
<td>H2</td>
</tr>
<tr>
<td>المتوسط</td>
<td>24.62</td>
<td>27.73</td>
<td>22.49</td>
<td></td>
</tr>
</tbody>
</table>

LSD 0.05

<table>
<thead>
<tr>
<th>HF</th>
<th>F</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.203</td>
<td>1.849</td>
<td>1.849</td>
</tr>
</tbody>
</table>
عدد التفرعات:

تشير النتائج في جدول 3 إلى وجود فروق معنوية، إذ تفوقت المعاملة H2 على معاملة H1، والتي بدورها تفوقت على معاملة المقارنة H0. إذ بلغ عدد التفرعات فيها (9.00 و 7.33 و 6.42) على الترتيب. وبينت النتائج أيضا وجود فروق معنوية بين متوسطات المعاملات عند إضافة الحديد إذ تفوقت معاملات إضافة مستويات الحديد F1 و F2 معنوية قياسا بمعاملة المقارنة F0 والتي بلغت (8.96 و 7.11 و 6.69) على التوالي. كما أدى التداخل الثنائي بين حامض الهيوميك وسماد الحديد إلى زيادة معنوية في عدد التفرعات لنبات الشبنت قياسا بمعاملة المقارنة H2F1 والتي أعطت 12.47 قياسا بمعاملة المقارنة H0F0 التي بلغت 5.67.

جدول (3) تأثير إضافة حامض الهيوميك وسماد الحديد في عدد التفرعات

<table>
<thead>
<tr>
<th></th>
<th>المتوسط</th>
<th>F2</th>
<th>F1</th>
<th>F0</th>
<th>F/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدول 1</td>
<td>6.42</td>
<td>6.60</td>
<td>7.00</td>
<td>5.67</td>
<td>H0</td>
</tr>
<tr>
<td>جدول 2</td>
<td>7.23</td>
<td>7.47</td>
<td>7.40</td>
<td>7.13</td>
<td>H1</td>
</tr>
<tr>
<td>جدول 3</td>
<td>9.00</td>
<td>7.27</td>
<td>12.47</td>
<td>7.27</td>
<td>H2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.11</td>
<td>8.96</td>
<td>6.69</td>
<td>المتوسط</td>
</tr>
</tbody>
</table>

LSD 0.05

HF F H
الوزن الرطب للنباتات:

بينت نتائج جدول 4 إن حامض الهيوميك قد أثر معنويًا في الوزن الرطب للنباتات مقارنة بمعالجة المقارنة إذ تفوقت المعاملة H2 وحققت أعلى متوسط للوزن الرطب بلغ 20.14 غم نباتاتً 1 ثم المعالمة H1 التي بلغت 17.47 غم نباتاتً 1 مقارة مع معالجة المقارنة التي أعطت أقل قيمة بلغت 17.29 غم نباتاتً 1. ويبين الجدول وجود فروق معنوية في معدل الوزن الرطب عند إضافة سماد الحديد إذ أعطت المعالمة F1 أعلى متوسط في الوزن الرطب بلغ 20.35 غم نباتاتً 1 ثم المعالمة F2 التي بلغت 17.95 غم نباتاتً 1 قياساً مع معالجة المقارنة التي بلغت 16.60 غم نباتاتً 1. أما التداخل بين حامض الهيوميك وسماد الحديد فقد أثر معنويًا في زيادة الوزن الرطب للنباتات إذ أعطت المعالمة H2 أعلى متوسط وزن رطب للنباتات البشبع بلغ 24.43 غم نباتاتً 1 وكان أقل متوسط في الوزن الرطب للنباتات في معالجة المقارنة بدون إضافة والذي بلغ 13.42 غم نباتاتً 1.

جدول (4) تأثير إضافة حامض الهيوميك وسماد الحديد في الوزن الرطب للنباتات غم نباتاتً 1

<table>
<thead>
<tr>
<th></th>
<th>F2</th>
<th>F1</th>
<th>F0</th>
<th>F/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>المتوسط</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.29</td>
<td>17.36</td>
<td>21.08</td>
<td>13.42</td>
<td>H0</td>
</tr>
<tr>
<td>17.47</td>
<td>18.74</td>
<td>15.54</td>
<td>18.12</td>
<td>H1</td>
</tr>
<tr>
<td>20.14</td>
<td>17.74</td>
<td>24.43</td>
<td>18.25</td>
<td>H2</td>
</tr>
<tr>
<td>المتوسط</td>
<td>17.95</td>
<td>20.35</td>
<td>16.60</td>
<td></td>
</tr>
</tbody>
</table>

LSD 0.05
المجلة جامعة ذي قار للبحوث الزراعية المجلد (10) العدد (2) لسنة (2021)

<table>
<thead>
<tr>
<th>HF</th>
<th>F</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.187</td>
<td>1.840</td>
<td>1.840</td>
</tr>
</tbody>
</table>

الوزن الجاف للنبات:

أظهرت النتائج في جدول (5) عدم وجود فروق معنوية عند إضافة حامض الهيموسك بنسبة 50% أو 75% إذ أعطت المعاملة أفضل قيمة لهذه الصفة بلغت 4.429 غم نبات١. في مقابلة معاملة المقارنة التي بلغت 4.109 غم نبات١. كذلك بينت النتائج عدم وجود فروق معنوية عند إضافة سماد الحديد إذ أعطت المعاملة F2 أعلى قيمة بلغت 4.414 غم نبات١. بينما بلغت معاملة المقارنة 4.089 غم نبات١. أما التداخل فقد أظهر وجود تأثير معنوي في متوسط هذه الصفة ناتج عن تأثير التداخل الثاني بين مستويات سماد حامض الهيموسك والهيدروكربونات والمعاملات المضاف إلىهما H2F2 و H0F1 والتي لم يكن بينهما فرقا معنوية بإعطاء أعلى قيمة معنوية للوزن الجاف للمجموع الخضري بلغت 4.640 و 4.537 غم نبات١. على التوالي قياسا بمعاملة المقارنة H0F0 التي بلغت 3.393 غم نبات١.

جدول (5) تأثير إضافة حامض الهيموسك وسماد الحديد في الوزن الجاف غم نبات١.

<table>
<thead>
<tr>
<th>المتوسط</th>
<th>F2</th>
<th>F1</th>
<th>F0</th>
<th>F/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.109</td>
<td>4.293</td>
<td>4.640</td>
<td>3.393</td>
<td>H0</td>
</tr>
<tr>
<td>4.227</td>
<td>4.413</td>
<td>4.020</td>
<td>4.247</td>
<td>H1</td>
</tr>
<tr>
<td>4.429</td>
<td>4.537</td>
<td>4.133</td>
<td>4.617</td>
<td>H2</td>
</tr>
<tr>
<td>4.414</td>
<td>4.264</td>
<td>4.086</td>
<td></td>
<td>المتوسط</td>
</tr>
</tbody>
</table>
جامعة ذي قار للبحوث الزراعية المجلد (10) العدد (2) لسنة (2021)

<table>
<thead>
<tr>
<th>LSD 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
</tr>
<tr>
<td>0.5883</td>
</tr>
</tbody>
</table>

محتوى الكلوروفيل ملغم/لتر

أشارت النتائج في جدول 6 عدم وجود فروق معنوية عند إضافة حمض الهيروماك بنسبة 50% أو 75% إذ أعطت المعاملة المقارنة التي بلغت 293 ملغم/لتر تلتها المعاملة H2 ، التي بلغت 225 ملغم/لتر قياساً مع المعاملة HF أ أفضل قيمة لهذه الصفة بلغت 293 ملغم/لتر. أظهرت النتائج وجود فروق معنوية بين متوسطات المعاملات عند إضافة سماد الحديد إذ تفوقت معاملة إضافة مستوى سماد الحديد H2 على محتوى الكلوروفيل 362 ملغم/لتر قياساً مع معاملة المقارنة المثلى، أدى التداخل الثنائي بين مستويات سماد حمض الهيروماك والحديد إلى زيادة معنوية في محتوى الكلوروفيل قياساً مع معاملة المقارنة أو المعاملات المضافة إلى سماد حمض الهيروماك والحديد بصورة منفردة وكان أعلى متوسط محتوى الكلوروفيل عند التداخل الثنائي للمعاملة H2F1 والتي أعطت 14 614 ملغم/لتر قياساً مع معاملة المقارنة H0F0 والتي بلغت 24 ملغم/لتر.

جدول (6) تأثير اضافة حمض الهيروماك وسماد الحديد في محتوى الكلوروفيل ملغم/لتر

<table>
<thead>
<tr>
<th>المتوسط</th>
<th>F2</th>
<th>F1</th>
<th>F0</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>200</td>
<td>352</td>
<td>24</td>
<td>H0</td>
</tr>
<tr>
<td>225</td>
<td>184</td>
<td>120</td>
<td>370</td>
<td>H1</td>
</tr>
<tr>
<td>293</td>
<td>167</td>
<td>614</td>
<td>97</td>
<td>H2</td>
</tr>
</tbody>
</table>
تناقش

يعزى سبب الزيادة المعنوية في الصفات الخضرية إلى دور حامض الهيوميك في زيادة الانقسام الخلوي واستطالة الخلايا إذ تؤثر تأثير مباشر في مختلف العمليات الحيوية لنبات مثل البناء الضوئي والتنفس و تصنيع البروتينات والكاهروهيدرات و بذلك يكون له تأثير مشابه لتأثير الهرمونات النباتية (Turkmen et al., 2004, H) كما أنه يزيد من نغذية الأغشية الخلوية (Kay a et al., 2005) و هذا يتفق مع ماذكره (Dimir, 1999) في دراسته على نبات الخيار النترية للنباتات (1990, Aived و Chen) و كذلك في دراسة على نبات البطاطا و كذلك (2005, Gusler و Hatice) وكذلك (Hatice و Gusler, 2005) و (2009, EL-Ghamavy) في الفاصوليا.

References

المصادر العربية

المصادر العبرية
المصادر الأجنبية

Abstract

Experiment was in green house of Department of Horticulture and Garden Engineering, Faculty of Agriculture and Marshland, University of Thi Qar, Iraq. In 2018-2019. For tested effect of adding Humic acid and Iron on some growth vegetative characteristics of dill (*Anethum graveolens* L.). Two factor were tested (Humic acid and Iron), in three levels were tested humic acid (H0 control, H1= 50% concentration and H2= 75% concentration) respectively. Iron (F0 control, F1= 4 grams/ pot and F2= 6 grams/ Pot) respectively. Plantlets were planted in plastic pots with three replications. A Study included twenty-seven experimental units in loam Silt soil by using the RCBD design. A study confirmed superiority of H2 level over the rest of the humic acid treatments (H0 control, H1) in plant height, branches number, plant wet weight, plant dry weight and chlorophyll content, with recorded an average of (27.76 cm, 9.00 branch/plant, 20.14 g /plant, 4.429 g/ plant and 1,293 mg / L) respectively. Also a study confirmed superiority of F1 level over the rest of Iron treatments (F0 control, F2) in plant height, branches number, plant wet weight and chlorophyll content, with recorded an average of (27.73 cm, 8.96 branch/plant, 20.35 g /plant, 362 mg / L) respectively. While F2 treatment was superior to average plant dry weight only (4.41 g/ plant). In interaction between (Humic acid and Iron) factors, a study confirmed superiority of H2F1 level over the rest of treatments in plant height, branches number, plant wet weight and chlorophyll content, with recorded an average of (33.80 cm, 12.47 branch/plant, 24.43 35 g /plant and 614 mg / L) respectively.