Study the Effect of Genetic Polymorphism in the Estrogen Receptor Gene (ESR) On the Meat Characteristics and Some Production Traits of Japanese Quail

Amamah Hamad Wali ២ Ali A. Abdulkareem ២

E-mail: amamh.post.2022@utq.edu.iq

E-mail: <u>ali-ah@utq.edu.iq</u>

Abstract

Study was Procedure in the poultry field of the Agricultural Research Station / College of Agriculture and marshes / Thi- Qar University for the period from 10/10/2023 to 3/15/2024, the period of field and laboratory work, as 150 Japanese quail birds were raised from the age of one day to 35 days.

Birds were numbered with plastic numbers, and the weights were taken weekly to calculate the weekly weight gain and feed conversion efficiency. After the end of the breeding period, the birds were slaughtered and the relative weight of the edible internal organs (heart, liver, gizzard), tenderness, and juiciness were calculated. Genetic analyzes were conducted in the laboratory of the Marshes Research Center/ Thi- Qar University. With the aim of extracting the genetic material and determining the phenotypic structures as well as performing electrophoresis of the studied samples, the amplification product was then sent to the KCM, for the purpose of determining the sequence of the nitrogenous bases of the studied part of the gene, determining the genotype of the ESR gene and studying its relationship with some productive and sensory traits. Which included (the rate of weekly weight gain, the efficiency of food conversion, the relative weight of the eaten parts, freshness and juiciness), where the location of the variation in the nitrogenous bases of the studied gene was diagnosed, and the genotypes resulting from this variation were determined, with the studied piece registered in the Gene Bank LC816736, and the results were as follows:

1- The possibility of amplifying the studied segment of the ESR gene, which is 301 base pairs, and confirming it through electrophoresis examination.

2- Knowing the location of the mutation in segment 100.T>C, as it did not change the amino acids of the ESR gene.

3- Determine Three genotypes as : CC, CT, and TT. The percentages were 12%, 74%, and 14%, and the frequency of the C allele was 0.49, while the frequency of the T allele was 0.51.

4-The results did not show significant differences in the weekly weight gain and food conversion efficiency for the resulting three genotypes.

5- There were no significant differences between the three genotypes of the studied gene for the weights of each of the eaten offal (heart, liver, and gizzard).

6-The results did not show significant differences between the three genotypes of the studied gene for tenderness and juiciness.

I. Introduction

Most studies and research related to quails have been conducted on Japanese and European quails, while the local quails were not highlighted despite their importance as a source of animal protein and their good quality meat, the quails are small in size, gray in color, striped with black on the back and wings. There are also other colors such as white. The male has black collars around the neck, which distinguish him from the female, and his tail is short. Quail breeding has spread widely and intensively in the second half of the last century, especially in Japan, France, Italy and Germany, in order to benefit from their meat and eggs. (Hosni et al., 2016)

UTJagr

University of Thi-Qar Journal of agricultural research Thi-Qar Journal of agricultural research ISSN Onlin:2708-9347, ISSN Print: 2708-9339 Volume 13, Issue 1 (2024) PP 536-542 https://jam.utq.edu.iq/index.php/main https://doi.org/10.54174/utjagr.v13i1.323

Recently, technology in genetics and molecular genetics has provided a number of genetic markers that have aided in genetic analysis and assessment of genetic diversity among different types of breeds and species in order to preserve them as a reliable source of genetic diversity (Abdulkareem, Azhar, 2022).

The productive performance of Japanese quail can be improved by improving its genetic characteristics and paying attention to potential environmental conditions. Quail meat is preferred over chicken meat due to its low fat content (low calories), taste and appetite. Therefore, the demand for quail meat is increasing, as is the search for how to produce such meat in a shorter period. This can be achieved through a specific selection program for high body weight at a certain age (Gnana et al., 2010). The purpose of studying carcass characteristics is to evaluate objective factors related to qualitative and quantitative aspects (Abdullah, Abdulkareem, (2019).

For birds that are genetically superior ,growth rate and production are an important aspect in commercial quail production, and it is impossible to accept that all economic traits are independent in their biology because these traits show phenotypic and genetic correlations resulting from linkage or polymorphism. The overall production performance of Japanese quail can be improved by knowing the selection indicators for several traits. Although reports are available on many types of selection indicators for chickens, this information is scant for Japanese quail and this leads to the search for good selection indicators for genetic improvement and the development of selection criteria that can be used in a future breeding program (Khairy et al., 2016).

The role of ESR in poultry production performance has been increasingly studied in recent years. The ESR gene is one of the candidate genes for discovering polymorphisms associated with production and egg traits in chickens, animals, and others (Wu et al., 2015).

II. Meterials & Method

This study was conducted in the animal production field of the Agricultural Research Station/College of Agriculture and Marshes / Thi- Qar University for the period from (10/10 2023) until the study period included two stages:

Field work stage: 150 unsexed Japanese quail chicks were raised from one day old to 35 days old using a cage-rearing system. The birds were sexed at three weeks of age. The cages were prepared to house the birds, made of wood and surrounded by plastic BRC. Dimensions of the cage (height: 150 cm, depth: 90 cm, width: 90 cm). Lighting was continuous for 24 hours, and water and feed were given freely. The preventive and health program recommended by the Agricultural Research Office was recommended, where some of the bird's characteristics were studied. Such as weight gain and feed conversion efficiency, and to ensure obtaining the required heat according to the age of the birds during the study period, as stated in (Abdel Majeed and Mahrous, 2001).

Week	Temperature
1	35
2	32
3	30
4	27
5	24

Table (1) shows the temperatures during the study period

University of Thi-Qar Journal of agricultural researchThi-Qar Journal of agricultural researchISSN Onlin:2708-9347, ISSN Print: 2708-9339 Volume 13, Issue 1 (2024) PP 536-542<u>https://jam.utq.edu.iq/index.php/main</u><u>https://doi.org/10.54174/utjagr.v13i1.323</u>

UTJagr Iniversity of Thi-Qar-Journal ci agricultural research

Laboratory work stage: The blood collection process took place when the birds were slaughtered, where 5 ml of blood was collected for each test tube from each bird and stored in test tubes containing the anticoagulant EDTA. The samples were transferred in a refrigerated box and kept frozen at a temperature of (-20). Celsius until the time of extraction of genetic material.

Sensory Tests:

The samples were evaluated according to the method of Tahir (1979), where cooked meat samples were presented for the purpose of sensory evaluation by a number of experienced arbitrators in the Department of Animal Production at the College of Agriculture and Marshes to evaluate the samples in terms of freshness and juiciness.

Sensory Evaluation Form					
Degree	Evolution	Degree	Evolution		
9	Excellent	5-6	Middle		
8	Very good	4-3	Acceptable		
7	Good	2-1	Unacceptable		

Table (2) shows Sensory evaluation form

DNA Extraction

DNA was extracted from blood samples by method included in the diagnostic kit (the kit supplied by the Korean company Geneaid)

Primers Preparation

The initials for ESR gene were prepared by the KCM in the form of a dried powder of two primers separated from each other, each primer placed in a special tube with a label showing the sequence of nitrogenous bases.

Table (3) shows the primers used for ESR gene

Gene	Primers	Widget size	Source
ESR 4	F 5'- CGGGCGAATGATGAAACA- 3' R 5'- CCCAGTTGATCATGTGCA- 3'	Base pair 301	Dong 2020 , others

Polymerase Chain Reaction (PCR):

To amplify the DNA of the ESR gene, Tables (4) and (5) show the materials used in molecular detection using polymerase chain reaction for the studied ESR gene. The samples are placed in the polymerase chain reaction device.

Table (4) shows Materials used in the PCR technique and their quantities

Chemical	Master Mix	DNA template	Data		Distilled	Final
	IVIIX	template	Reverse	Forward	water	5120
Volume (micro liters)	13	4	1	1	6	25

Table (5) shows The program for PCR technology for gene ESR

University of Thi-Qar Journal of agricultural research Thi-Qar Journal of agricultural research

 ISSN Onlin:2708-9347, ISSN Print: 2708-9339
 Volume 13, Issue 1 (2024) PP 536-542

 <u>https://jam.utq.edu.iq/index.php/main</u>
 <u>https://doi.org/10.54174/utjagr.v13i1.323</u>

Gene	Stages	Temperature	Time (minutes)	Courses Number
	Primary Metamorphosis	95C	5 m.	1
ESR Gene	Metamorphosis	95C	30 S.	35
	Adhesion	58C	30 S.	
	Elongation	72C	45 S.	1
	Final elongation	72C	10 m.	

Statistical Analysis

Statistical analysis of the study data was conducted using the ready-made statistical program (SAS Statistical analysis system (SAS, 2012) and included studying the effect of the studied gene (ESR) and by week on the traits under study (growth and carcass traits in quail) and according to the mathematical model below, and the significant differences were compared between Means were calculated using Duncan's multinomial test (Duncan, 1955) and using a completely randomized design (CRD).

Mathematical model: Yijk=µ+GI+Eijk

III. Results and Discussion

Weekly Weight Gain:

The results in Table 6 indicate that there are no significant differences between the genotypes in the rate of weekly weight gain during the breeding period of five weeks, as the weight gain at the end of the experiment (fifth week) for the genotypes TT, CT, CC was (27.428, 27.783, 30.166 grams). Respectively.

Table(6) shows the weekly body weight ± standard error between the different genotypes in ESR G. for the weeks from the first to the fifth week (Japanese quail) respectively.

Traits	Genetic structure	No.	Mean (g) \pm standard error	Significant
	CC	6	±1.668021.50	
First week	СТ	37	±0.551024.54	N.S
	TT	7	21.857 ±1.335	
Та	otal	50	22.632 ±1.558	
	CC	6	22.486 ±0578	
Second week	СТ	37	52.428 ±0.961	N.S
	TT	7	57.428 ±0.578	
То	otal	50	23.759 ±1.221	
	CC	6	52.1667 ±1.796	
Third week	СТ	37	53.162 ±0.834	N.S
	TT	7	53.142 ±1.56	
Τα	otal	50	52.490±1.228	

University of Thi-Qar Journal of agricultural research Thi-Qar Journal of agricultural research

 ISSN Onlin:2708-9347, ISSN Print: 2708-9339
 Volume 13, Issue 1 (2024) PP 536-542

 <u>https://jam.utq.edu.iq/index.php/main</u>
 <u>https://doi.org/10.54174/utjagr.v13i1.323</u>

	CC	6	45.166 ±3.637	
Fourth week	СТ	37	42.891 ±1.082	N.S
	TT	7	43.142 ±3.367	
To	tal	50	43.733 ±2.698	
	CC	6	30.166 ±3.070	
	СТ	37	27.783 ±1.246	N.S
Fifth week	TT	7	27.428 ±3.293	
Total		50	28.459±2.536	

Feed Conversion Efficiency

The results of Table 7 indicate that there are no significant differences between the genotypes in the feed conversion efficiency during the rearing period of five weeks. The feed conversion efficiency at the end of the experiment (fifth week) for the genotypes CC and CT was 5.504, 5.504, and 4.713 grams of TT, respectively, and was not available. Previous studies on the relationship of the gene under study with feed conversion efficiency.

Traits	Genetic structure	No.	Mean (g) ± standard error	Significant
	CC	6	3.833 ±0.295	
First week	CT	37	3.326 ±0.084	N.S
	TT	7	3.739 ±0.218	
Te	otal	50	3.632 ±0.199	
	CC	6	5.90 ±0.543	
Second week	CT	37	5.179 ±0.153	N.S
	TT	7	4.503 ±0.192	
To	otal	50	4.924 ± 0.888	
	CC	6	3.6020 ±0.438	
Third weak	СТ	37	3.162 ±0.049	NC
TIII'U WEEK	TT	7	3.205 ±0.064	11.5
Total		50	3.323 ±0.183	
	CC	6	2.746 ±0.230	
Fourth week	CT	37	2.934 ±0.106	N.S
	TT	7	2.911 ±0.283	
To	tal	50	2.863 ±0.283	
	CC	6	4.713±0.593	
Fifth week	СТ	37	5.504 ±0476	N.S
	TT	7	5.507 ±0.973	
To	otal	50	5.241±0.680	

Table (7): shows efficiency of food conversion ± the standard error among the different genotypes in ESR g from the first week to the fifth week for the Japanese quail.

Eaten Entrails

The results shown in Table 8 indicate that there are no significant differences in the relative weight of the heart muscle, and the proportions of the genotypes CC, CT, and TT were (1.899, 2.021, 1.914), respectively. These results agreed with Jun et al. (2021) for a study on a bird. Korean quail, where the

University of Thi-Qar Journal of agricultural research Thi-Qar Journal of agricultural research n:2708-9347, ISSN Print: 2708-9339 Volume 13, Issue 1 (2024)

ISSN Onlin:2708-9347, ISSN Print: 2708-9339 Volume 13, Issue 1 (2024) PP 536-542 https://jam.utq.edu.iq/index.php/main https://doi.org/10.54174/utjagr.v13i1.323

genotypes CC, CT, TT and their ratios were (1.180, 1.122, 1.006), respectively. At the same time, this result did not agree with Jun et al. (2020), who indicated that there were significant differences at the level ($P \le 0.05$) when he conducted a study. On the Chinese yellow quail, it was found that there was a significant superiority of the CC genotype over (TT1.067, 0.80), respectively.

As for the results of the relative weight of the liver and gizzard, they indicated that there were no significant differences for the genotypes CC, CT, and TT for the experimental samples, and this is what Jun and others found in (2020) who showed that there were no significant differences for the Korean quail in the genotypes TT, CC (5.773). 7,600, respectively, as well as what was confirmed by Jun and others in (2021) in a study of Chinese yellow quail with genotypes CC, CT, TT (3,700, 3,500,833), respectively.

Table (8): Shows the Relative weights of internal organs (g) ± the standard error between the different genotypes in ESR g. of the Japanese quail.

Traits	Genetic structure	No.	Mean (g) \pm standard error	Significant
	CC	6	1.899 ±0.106	
Heart	CT	37	2.021 ±0.041	N.S
	TT	7	1.914 ±0.121	
Τα	otal	50	1.499 ±0.089	
	CC	6	3.0313 ±0.297	
Liver	СТ	37	3.3587 ±0.058	N.S
	TT	7	3.082 ±0.039	
Τα	otal	50	3.157 ±0.131	
Gizzard	CC	6	2.703 ±0.142	
Olzzard	СТ	37	2.855 ±0.055	N.S
	TT	7	2.608±0.057	
Τα	otal	50	2.722 ±0.084	

Tender and Juiciness

The results of Table 9 indicate that there are no significant differences in freshness between the genotypes CC, CT, and TT (7.402, 7.325, 6.561), and also no significant differences were observed in juiciness between the genotypes CC, CT, and TT (7.217, 7.110, 6.65) as shown below:

Table (9): Shows Meat sensory Traits, % ± standard error between the genotypes of the ESR G.for Japanese quail.

Traits	Genetic structure	No.	Mean (g) \pm standard error	Significant
	CC	6	6.561 ±0.602	
Tender	CT	37	7.325 ±0.170	N.S
	TT	7	7.402±0.329	
Τα	otal	50	7.069 ±0.367	
	CC	6	6.65±0.523	
Juiciness	CT	37	7.110±0.154	N.S
	TT	7	7.217±0.267	
Τα	otal	50	6.992 ±0.944	

University of Thi-Qar Journal of agricultural research Thi-Qar Journal of agricultural research

ISSN Onlin:2708-9347, ISSN Print: 2708-9339 Volume 13, Issue 1 (2024) PP 536-542

https://jam.utq.edu.iq/index.php/main

https://doi.org/10.54174/utjagr.v13i1.323

IV. References

-عبد المجيد ,احمد حسين ومحروس ,احمد عبد الرحمن .2001.انتاج السمان ,معهد بحوث الانتاج الحيواني ,مركز بحوث الزراعية .مصر

- حسني حمادة، عبد الجليل غريواتي ، عدنان المعراوي . 2016 . مقارنة أجزاء الذبيحة بين مجموعتين من طيور السمان الطبيعية والطافرة Coturnix , لمجلة الأردنية في العلوم الزراعية المجلد 12، العدد 2

- Abdullah, H. S., and Abdulkareem, A.A. (2019). CAST/MspI gene polymorphism and its impact on growth performance and carcass traits of Shami goats breed in Iraq, College of Agriculture-University of Thi-Qar.

-Azhar A. J., and Abdulkareem, A.A. (2022). Genetic Diversity and Identification of MC1R SNPS Association with Colors in Iraqi Local Ducks , IOP Conf. Series: Earth and Environmental Science.

-Jun,J.Y., Dong,Z.H., Lu,X.N., Huang,Z.Y., Li,Z.H., Gong ,H.R.,and HU,Q.H,.(2020) . Association analysis of ESR gene polymorphism and carcass traits in egg quails (Coturnix coturnix). Indian Journal of Animal Sciences Volume 90, Page 1321–1324

-Khairy, M., Mahmoud, S., Mohammed A. F. asr1, Ashraf, A. and El-Shimaa, M. R.(2016). Detection of SNPs in growth hormone and insulin like.

- Malarmathi, M. B., Ramesh, G1., Gnana, P. and Rajashekar, A. R. (2010). SELECTION INDICES FOR THE IMPROVEMENT OF PRODUCTION TRAITS IN JAPANESE QUAILS, Tamilnadu J. Veterinary & Animal Sciences 6 (4) 170-173, July – August

-Y. Wu1,2, A. L. Pan1, J. S. Pi1, Y. J. Pu1, J. P. Du1, Z. H. Liang1, and J. Shen1. (2015). SNP analysis reveals estrogen receptor 1 (ESR1) gene variants associated with laying traits in , Arch. Anim. Breed, Voulume 58, Page 441–444.

- Tahir, M. A. (1979). Effect of collagen on measure on meat tendersess. Ph. D. Thesis. Univ. Nebraska, Lincoln, Neb.

